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1 Introduction

FLEXIFIT is a computer program designed for analysis of families
of curves of similar shape. It allows one to abstract the
underlying shape of the curves and then characterize the



differences between family members as horizontal and vertical
translations and stretches (shifts and scales). Each member of a
family is characterized in relation to its first member or to a
"template curve".

The common "shape™ is characterized as a cubic smoothing spline,
applied to all of the data curves after they have been
superimposed by appropriate shifting and scaling. Once the shape
is determined, a new set of shifting and scaling parameters can be
determined. Thus, the algorithm is iterative in nature. Initial
guesses of appropriate shifts and scales are required, but these
are usually easily obtained by inspection of a graph of the data.
Initial estimate rules are built into the program.

The degree of smoothing for the spline may be determined
automatically by the program or specified by the user. If the

user specifies "monotonicity”, the program finds the "roughest”
curve consistent with this requirement. The user may also specify
the number of inflection points in the final curve, and again, the
program will find the "roughest” curve consistent with this
requirement. (This latter option may have problems in some cases,
though). Alternately, the user may specify the value of the
penalty factor | in the penalized sum of squares which is
minimized by the cubic smoothing spline. The expression is:

aly-o(y™N)2+1of'2

Large values of | make the spline nearly linear. This would be
equivalent to fitting the family of curves with a series of

straight lines. Small values of | require the spline to nearly
interpolate each data point in the family. Extremely small |

values make the estimation of the shift and scale parameters
impossible, as an interpolating spline may be drawn through the
superimposed curves no matter how the data were first shifted and
scaled. As a result, one should choose intermediate | values.

To help in the appropriate choice of |, a parameter called
"Percentage smoothing" is calculated. It is the ratio of sum-of-
squares for a particular | to sum-of-squares for | infinite. This
ratio is a measure of the degree of smoothing applied to the data.
By this measure, a straight line is 100% smooth.

The equations to be fit to the family of curves may be written:



y = (A1-D1) fs(B1(z-C1)) + D1
y = (A2-D2) fs(B2(z-C2)) + D2
y = (A3-D3) fs(B3(z-C3)) + D3

where fs is the common cubic spline function; the As and Ds are
"vertical" parameters, and the Bs and Cs are "horizontal” scaling
parameters. This parameterization was inspired by the "four-
parameter logistic™ used in our ALLFIT program, namely,

y=f(A-D,1+ (x/C)B) + D,

which can also be written,
y = (A-D) fl(B(z - logC)) +D

where z = log(x) and the logistic function fl is defined
fl(z) = 1/(1+102z)

Notice a subtle difference between the distinct uses of the letter
"C", namely between C in the FLEXIFIT equation and logC in the
ALLFIT equation. This confusion is unfortunate, but now exists in
the published literature. Therefore, we shall refer to the
FLEXIFIT C (CFLEXIFIT) and to the ALLFIT C (CALLFIT). The
following equivalence holds:

CFLEXIFIT = Log10 ( CALLFIT)

CALLFIT = 10CFLEXIFIT

If you are doing problems related to biopotency estimation, ED50,
IC50, or LD50 analysis, analysis of pharmacological dose-response
curves, binding inhibition curves, bioassay, radioimmunoassay,
ELISA, IRMA, EMIT, USERIA, or similar procedure, in short, if you
might have used ALLFIT, then use the ALLFIT parameterization.
CALLFIT can usually be interpreted as the ED50 in the original
data scale.

If you are applying FLEXIFIT in other contexts, where you seek to



graphically shift and scale the curves so that they superimpose,
the CFLEXIFIT will correspond to the horizontal shift parameter, B
to the horizontal scaling parameter.

In any case, think of D as a vertical shift parameter (e.g. a
baseline value) and A as a maximal value. The difference (A-D)
itself is a vertical scale parameter, or may be thought of as the
vertical excursion or data range. A and D are most meaningful
when the shape is like that of a logistic function, i.e. having
both a lower and an upper plateau. For descending logistic-like
curves, A is the level of the low dose (small z) plateau, and D is
the level of the high dose (large z) plateau (provided you have
used the appropriate Template or Reference curve, see below).

The FLEXIFIT problem is initially overparameterized (for example,
think of a family with only one member; then A1,B1,C1 and D1 are
undefined since a spline can be fit regardless of their values!)

We remove these excess parameters by establishing one curve as a
basis of reference for all the others. This usually is

accomplished by having Al, B1, C1 and D1 set to constant values.

It is often convenient to set A=1, D=0, B=1, C=0 for this

reference curve.

One of the features of FLEXIFIT allows one to constrain various
parameters to share values. It is possible, for example, to

require the first three curves to share a baseline (D) value,

while allowing the rest of the curves to have individual baseline
levels. One may also remove parameters from the model by fixing
them at constant values. Careful use of the parameter sharing and
fixing facility allows for the comparison of a wide variety of
statistical hypotheses (e.g. do compound | and compound Il have
the same ED50 value).

In the case of sigmoidal or logistic-like curves, the optional
logistic

T(z) = 1(10z,1+102z)

should be applied before calculating the spline. Thus, the model
now becomes

y = (A-D) fs(T(B(z-C))) + D



or y=(A-D) fs(T(z")) +D
where z' = B(z-C)

Now, the shifting and scaling is done in one scale (the z = log(x)
scale) while the spline is fit in another (y vs. T(z")).

To the user, the use of a transformation is transparent, except

that more "realistic” plateaus are fit with the above

transformation. Moreover, using the above template curve together
with this transformation and specifying PV=1000, results exactly
comparable to those from ALLFIT are obtained. In this sense,
FLEXIFIT becomes a true extension of the four-parameter logistic
model.

Selecting the logistic tranform option of the program

automatically generates a special three-point template curve with
corresponding parameters AO, BO, CO, and DO. These parameters are
always set to constant values. The purpose of this curve is to
provide three artificial data points to "anchor” the spline at

three places: the beginning, middle , and end. Effectively, the
spline, in the y vs. T coordinate system is constrained to pass
through (0,1), (.5,.5) and (1,0).

A second transformation is provided, which simply takes the base
10 logarithm of any input "x" data. This is used primarily to
make FLEXIFIT directly accept data files prepared for the ALLFIT
program. Said another way, if the user of FLEXIFIT desires to
make shifts and scale changes in the logarithm of the original
data, as is the case when x represents concentration, he may do so
with this option.

2 Required Hardware

IBM-PC

The FLEXIFIT program is designed to run on all IBM-PC and related
clones. The program has been run on an IBM PS2/80(80386),
Compaqg

Plus (8086), Compagq Ill (80286), and IBM XT computers. It failed



for unknown reasons on an IBM XT with Tiny Turbo 80286 card. We
do

know that using different compiler options (specifically,

compilation using 80286 codes) does work on the Tiny Turbo card.

The program is designed to make optional use of the 8087 (or
appropriate) floating point coprocessor chip, and installation of
this chip is recommended as it greatly speeds up processing.

Execution times for the examples shown in this manual run from
nearly instantaneous (80386/80387) to 15 minutes (8086 w/0
8087).

Use of automatic selection of smoothing parameter can increase run
times up to 15 fold.

A full 512K or 640K machine is recommended fro program operation,
as is a hard disk, video board (CGA or Hercules) for the graphics
program. A dot-matrix or laser printer is useful to record the

graphs onto paper. The utility program GRAFTRAX.EXE is provided to
dump CGA memory to an Epsom FX80) or equivalent printer.

Apple Macintosh

Flexifit is also available for the Apple Macintosh. It has been
tested on the Mac I, the Mac llcx and the Mac SE. A minimum of 1
meg. of memory is suggested.Processing speeds on the Mac Il are
comparable to those seen on the IBM-AT. No installation is
required on the Macintosh. The FLEXIFIT program can be run from
floppy or copied onto and launched from the hard disk. It will run
faster on the hard disk because file 170 is faster on the hard

disk than on the floppy. As with any program, it is suggested that
you make a backup copy of FLEXIFIT (either onto hard disk or
floppy) and run the program from your backup.

3 Data Files
Input Data Format

The format of the input data file is the same for the PC and the



Macintosh versions of Flexifit. The data files used as input to
FLEXIFIT are text (ASCII) files which can be created using any
text editor. X,Y pairs are placed on each line where X is the
independent value (abcissa), usually in terms of concentration if
you are working with a bioassay or dose-response study, and Y is
the dependent (ordinate) value, or response of the system in
bioassay. The particular interpretation, and units of X and Y are,
of course dependent on your particular study.

Each data file may contain a number of separate curves, or you may
put a single curve in each data file. Curves within data files

start with a line of text (don't use numerals in the first

position as this will be interpreted as a continuation of a

previous curve). It is smart to use a short, meaningful

description on this line for each curve.

The individual (X,Y) pairs are placed on separate lines. Each
number may be separated by blanks, tabs or commas. No particular
format or position within the line is required. The sample data

set used in this document is listed below.

Data file sample.all

APOMORPHINE-TER***
0, 12570

1E-9, 12208

1E-8, 11789

3E-8, 11273

1E-7, 10382

3E-7, 9828
1E-6, 7918
3E-6, 6351
1E-5, 6135
1E-4, 5724
DOPAMINE-TER***
0, 12556

1E-9, 12421
1E-8, 11743
3E-8, 11287
1E-7, 11333
3E-7, 10328
1E-6, 9443

3E-6, 8610



1E-5, 7853

1E-4, 5984
EPINEPHRINE-TER***
0, 12940

1E-8, 12090

1E-7, 11248

3E-7, 10628

1E-6, 10239

3E-6, 9282

1E-5, 8526

3E-5, 7560

1E-4, 6788

1E-3, 6140
NOREPINEPHINE-TER***
0, 12923

1E-8, 12421
1E-7, 11625
3E-7, 10955
1E-6, 10196

3E-6, 9799
1E-5, 8905
3E-5, 8202
1E-4, 7289
1E-3, 6416

Files Created by Flexifit

Flexifit produces two files; a session file and a graph file. (The
graph file is not produced by the Macintosh version).

The session file is a text file which contains the textual results
output to the screen (the Flexifit Display Screen window for the
Macintosh version) by the Flexifit program. This file contains the
switches or options, parameter values and constraints and the
results of the fit.

The graph file is only produced by the PC version. It is later
used as input to the GRAFIT program on the PC. The format of this
file is discussed in the section of PC Operations.

4 Macintosh Operation

A typical FLEXIFIT session on the Macintosh would involve
selecting a data file and performing a fit. The program generated



results are displayed in several different windows on the screen.
When the fit is complete you can plot the results by selecting

Plot from the Flexifit menu. The graphs are displayed in a graph
window. The total plotting area is greater than that displayed in
the graph window. Another window, Reduced view, can be used to
look at the entire plotting area. A more advanced user may want to
change an option and/or set shared or constant parameters before
performing the fit. All of the menus and windows are discussed in
the sections that follow. This section on Macintosh Operations

ends with a sample session.

Flexifit Menus

The Flexifit program uses five menus; the Apple Menu, a File Menu,
an Edit Menu, a Windows Menu and lastly the Flexifit Menu. These
menus are discussed below.

The Apple Menu

The Apple menu gives you access to the About the Finder window
and

any desk accessories installed on your Macintosh. (In addition,
with MultiFinder on, you can use the Apple menu to move among
open applications. For details, see chapter 10 of the Macintosh
System Software User's Guide.)

The File Menu



Select File. Select File causes the standard file dialog box to
be displayed. Only files with the .ALL file extender are
displayed. Double click the file to open it. (Alternately you
can select the file and then click the Open button). The data
from the file is displayed in the Data Points window as it is
read.

Save As... . Save As allows you to save information displayed on
the screen into a file. Plots are saved as .pict files. Text
from any of the editors is saved as text files.

Print... . Print allows you to print text from the editors ; and
plots from the graph window.

Save Settings... . Save Settings is used to save the placement
of windows on the screen.

Quit Flexifit. Quit Flexifit closes the session file and returns
you to the finder.

The Edit Menu

Cut. Cut removes the selected material and places it on the
Clipboard (replacing the previous contents, if any).

Copy. Copy puts a copy of the selected material on the Clipboard
(replacing the previous contents, if any). The "original” stays
where it was when you selected it.

Paste. Paste puts a copy of the contents of the Clipboard at the
insertion point. You can continue to paste copies until you cut
or copy a new selection (which replaces the old contents of the
Clipboard).

Clear. Clear removes the selected material without placing it on
the Clipboard. The contents of the Clipboard remain intact.

Select All. This command selects all material in the active
window. All plots in the plot window or all text in the Flexifit
Screen Display.



Combine. Combine is used to merge pictures into a single
picture. Each plot is drawn as a new picture and any single plot
can be saved in a .pict file. If you wanted to save more than
one plot in a .pict file then you would select the plots (click
and then shift click) and then use combine to merge the
pictures. These plots could then be saved in a single .pict file
using the save command.

The Windows Menu

Graph Setup... Graph Setup displays a dialog used to set

defaults used in the graph window. This menu item is displayed
when the graph window is active. If the Flexifit Screen Display
is the active window then Edit

Setup... will be displayed instead in this menu position. Sheet
Setup...is displayed if the Parameter Values Spread Sheet is the
active window.

Clipboard. Clipboard can be used to find out how much memory you
have left and also shows you what text or picture the clipboard
contains.

Reduced View. Reduced View displays a window showing the entire
drawing area.

Graph .Graph displays the graph window which is used for
plotting. Plots can not be generated until after a fit has been
completed successfully.

Data Points. Data Points displays the window where the input
data is displayed.

Flexifit Screen Output. Flexifit Screen Output displays the
window where the tabular results of the fit are displayed.



The Flexifit Menu

Options. Clicking the Options menu item results in the display
of the options dialog box.

Constraints. The constraints menu selection is used to set and
clear constant and shared parameters. Clicking the constraints
menu item results in the display of a sub menu with the choices
Constant, Shared and Clear. Selecting Constant or Shared results
in the display of a dialog box. Clear removes all constant and
shared associations but does not recalculate the parameter
values.

Parameter Values. Clicking the Parameter Values menu selection
results in the display of a spread sheet containing the
parameter values. The values may be edited using this spread
sheet. If the value of a shared parameter is changed the change
is automatically applied to the associated shared parameters.

Reset Parameters. Reset Parameters initializes the values of all
parameter values. Shared and constant associations are cleared.

Fit Data. Fit Data begins the data fit. Results are displayed on

the monitor as they are obtained. Parameter values as displayed
in the spread sheet are updated as the fit progresses. (Once the
fit has started it may be interrupted by holding down the
command key and striking the letter 'c").

Plot. Plot results in the display of a submenu containing the
three types of plots... Fitted Curves, Common Spline -
Linearized and Common Spline. Upon selecting a plot from the
plot submenu, a dialog box is displayed that allows you to
customize the look of the plot.



Plot input. Plot input allows you to plot the point in the
original data file. This can be done before any fit has been
made.

Flexifit Windows

The Flexifit program uses five window.

- Flexifit Screen Output

- Flexifit Parameter Values
- Data Points

- Graph

- Reduced View

You can choose to display or not display any of these windows. The
windows are removed from the screen by clicking the goaway box
located in the upper left hand corner of the window. To redisplay
the window click on the appropriate selection in the Windows Menu.
All of the windows can be resized except for the reduced view
window. Upon launching the Flexifit program you may want only
certain windows to be displayed at a particular size and location

on the screen. This can be done by first arranging the windows and
then clicking Save settings... from the File Menu. The windows are
discussed below in greater detail.

The Flexifit Screen Output Window

The Flexifit Screen Output Window is used to display all
information pertinent to a fit. This information includes the
name of the input file, the number of curves and data points in
the input, the options, constraints and parameter values and
finally the results of the fit. This data is also saved
automatically in a session file.



The Flexifit Parameter Values Window

The Flexifit Parameter Values Window functions like a
spreadsheet. You may edit parameter values by clicking on the
value, entering the new value and then hitting return. If the
parameter value changed is a shared parameter, all other
parameters in the same group will be updated to reflect the new
value. As the parameter values change during the course of the
fit, the new values are updated in the spreadsheet.

The Data Points Window

The Flexifit Data Points Window is used to display the data points
from the input data file. This window is used for display only and
can not be used to edit the data file.

The Graph Window

The Flexifit Graph Window is used to plot the results of the fit.
Only a portion of the entire drawing area is displayed in this
window. The entire drawing area is broken up into pages. Both the
size and number of pages can be set via the "Graph Setup...”
dialog obtained by selecting Graph Setup... in the windows menu.
Different plots can be drawn on different pages. It is easy to
move from page to page via the Tab key. Scroll bars can be
activated by pressing and holding the option key. The option key
also activates a "hand cursor" which is used to drag the drawing
area across the screen. If you use the default plot settings,

then each plot will be drawn on a separate page. You may change
this by resizing the plot box (click and drag) relocating it and
then unchecking 'Use default frame' in the plot setup dialog. The
plot will then be resized and drawn at the location you specified.

The Reduced View Window

The Reduced View Window is used to display the entire drawing
area

and the pages into which the drawing area has been broken. This is
useful to look at all the plots you have created and see how they
will be arranged on a page(s) if and when they are printed. The
numbers displayed at the top of the window, 1:6 for example, is a
ratio of the reduced view window to the graph window. A
"magnifying glass” cursor (option key) when clicked in the reduced



view, causes the corresponding graph drawing area to become
visible in the graph window.

Options

FLEXIFIT options are changed via the dialog box shown below. Click
the menu item Options to display this dialog.

Is monotonicity required ?
Checking this box requires the curve to be monotonic (also
controls the degree of smoothing)

Specify maximum inflection points ?
The number of inflection points is used to control smoothing.

Specify minimum % smoothing ?
Provides a minimum degree of smoothing. 100% smoothing
produces a straight line.

Fit bell shaped curve
This is a special feature for curves which seem to rise, then
fall back to the original value.

Specify starting Lambda ?
Lambda also controls the degree of smoothing. Values of
lambda are tried iteratively until the other smoothing
criteria are met. Starting values of lambda should be large,
say 1E3.

Specify ending Lambda ?
Final or ending values should be small, around 1E-3.

Specify fixed Lambda ?
Specifying a fixed value for lambda reduces computing time
considerably.

Create session file ?
- Automatically writes the tabular results of the session to



a file. The file names are FLEXNnn.SES where nn is incremented
for each run of FLEXIFIT.

Apply template ?
A template curve should be generated whenever the logistic
transform is used. The purpose of the template is to "nail
down" the ends of the spline in the transformed coordinate
system. Without a template, poor convergence may be
experienced.

Take logs of data ?
Take logs of X values in input file.

Use logistic transform ?
Useful if data represent a logistic (S-shaped) curve
characteristic of dose-response curves plotted on log X
scale.

Weighted fit ?
Allows for user-specified variance model to generate weights
for regression. The variance model assumes a quadratic
relationship between Y and its variance: Var(Y) = AO + AL1Y +
A2Y2

Setting Parameter Constraints

A set of four parameters (A, B, C and D) is associated with each
curve in a data set. Constant and shared constraints can be
associated with these parameters. A data file must be selected
before constraints can be set. After selecting a data file the
Constraints menu item in the Flexifit menu will be ungreyed.
Shared and constant constraints can then be set by clicking the
Shared or Constant menu items displayed in the Constraints sub
menu. Setting the shared and constant constraints is discussed
below.

Setting Shared Constraints



First click the Constraints menu item and then click the Shared
menu item from the sub menu. The dialog box shown below will be
displayed. (The dialog box shown is for a data set with four data
curves).

A1l can only be shared with other A parameters; B1 with other B
parameters etc. Thus A1l cannot be shared with B1, C1 or D1. To set
Al and A2 as shared simply click the boxes and then click Enter or
Done button. Click Enter if you want to select more shared

groups. Clicking the Done button will remove the dialog box from
the screen. Once a group of parameters is selected as a group,

they will be greyed. Clicking the Cancel button will undo the
shared associations you just made.

In order to clear any or all shared constraints you must select
Reset parameters from the Flexifit Menu.

Setting Constant Constraints

To set parameter values to constants Click the Constant menu item
from the Constraints sub menu. Parameters are set to constants by
clicking the appropriate check box in the Constant Parameters
Dialog. The constant constraint can be cleared by unchecking the
check box.

Setting Parameter Values

Parameter values can be modified in the parameter values spread
sheet. If the parameter value changed is a shared parameter then
its associated shared parameters will be automatically updated.
The parameter values spread sheet is displayed by clicking the
Flexifit Parameter Values menu item in the Windows menu or by
clicking the Parameter Values menu item from the Flexifit menu.



Creating Plots

FLEXIFIT offers three types of plots: Fitted Curves, Common Spline
and Common Spline - Linearized. To create a plot, click on the
desired type of plot from the plot submenu. The following dialog
box will be displayed:

You can use the default settings. Simply click the OK button and
the plot will be drawn in the graph window.

Changing Labels on Plots

The buttons ALL, Title etc. located at the bottom of the dialog
box are used to change the font, color, size, and textual content
of the plot labels. Upon clicking any of these buttons you will be
presented with a dialog similar to the one below:

Changing the Size of the Plot

The size of the frame (plot box) in which the plot is drawn can be
altered by click/ dragging the frame prior to selecting the plot.
You must then clear the check box labeled Use default frame (in
the plot dialog box) else the default size and location will be
used.

Plots are drawn in a full graph window and a reduced view window.
The graph window displays only a portion of the total drawing

area. The reduced view window (Selected from the Window menu)
displays the entire drawing area, broken up into one or more

pages. The Fitted Curves Plot is drawn on page 1, the Common
Spline on page 2 and the Common Spline - Linearized is drawn on
page 3. When these are printed they will be printed on separate
pages. You can set the number and size of each page via the Graph
Setup Dialog. (To obtain this dialog bring the graph window to the
front and click Graph Setup under the Window menu). You can move
from page to page via the Tab key, scroll bars (press option key),

a "hand" cursor which drags the drawing area across the graph
window, and a "magnifying glass" which, when clicked in the



reduced view, causes the corresponding graph drawing area to
become visible in the full view.

Printing Plots
To print a plot, first make sure that the graph or reduced view is
the front window and then select print from the File menu.

The Macintosh screen resolution of 72 pixels/inch is lower than
what most printers can achieve. To work at the higher printing
resolutions (more pixels per inch), you can choose a smaller
"percent reduction”. Choosing 50% reduction in the "page Setup"
dialog, for example, would produce a graph page size which was
twice as wide and twice as tall as the printer's normal page size
(corresponding to 100%). When printing, these large pages are then
reduced to a normal page size without the loss of information

(each pixel on the screen appears as a separate dot on the printed
page). This technique is particularly useful when used with the
Laser Writer, where a 25% reduction produces a graph page size
which is large enough to represent every pixel which can be drawn
on a LaserWriter page (300 dpi). A graph drawn into such a large
page, for example, would be reduced 4-fold in each dimension when
printed, resulting in an extremely fine and detailed drawing.

Modifying Plots Using other Software

Once created plots can be combined and/or saved as .pict files
which then can later be modified using drawing programs such as
MacDraw.

Logistic Curves Example

We now describe a session of FLEXIFIT using the data file SAMPLE
from a previous section. The data represent inhibition of binding
of a radioactively labeled drug by four unlabeled drugs. This
identical data set is described in the ALLFIT User's Guide
(November 1988). This run of FLEXIFIT is arranged so that
identical results are obtained. Thus, this first approach is a

good starting place for previous ALLFIT users. Not described
here, but in common with ALLFIT, FLEXIFIT has the potential to
constrain the parameters to constant values or to values taken by
other parameters. Thus, since the amount of inhibition in the
presence of a zero dose of drug is theoretically identical, it

might be appropriate to constrain Al = A2 = A3 = A4. One can
also attempt the constraint D1 = D2 = D3 = D4 to test if the



maximal inhibitions for all four drugs are the same. (Note: This
example is also described in the PC-Operations chapter.)

We run FLEXIFIT using the logistic transform. Click on the Options
selection in the FLEXIFIT menu. The options dialog displayed below
will be displayed. Click the Use logistic transform box and then
click OK.

Next we select the file. Click on Select file from the File menu.
Double click on the file sample.all displayed in the file

selection dialog. As the file is read, the data points will be
displayed in the Data Points window. The output shown below will
be displayed in the Flexifit Screen Display window.

———————— FLEXIFIT v. 1.0 -------- 7/16/1990 10:24:19

TEMPLATE CURVE:
CURVE: BLTIN3 --- CURVE # O 3-POINT BUILT-IN TEMPLATE
***xx* DATA FILE(S) OPENED *****

DATA FILE: SAMPLE.ALL
CURVE: APOMOR --- CURVE # 1 HAS 10 POINTS.
CURVE: DOPAMI --- CURVE # 2 HAS 10 POINTS.
CURVE: EPINEP --- CURVE # 3 HAS 10 POINTS.
CURVE: NOREPI --- CURVE # 4 HAS 10 POINTS.

*Fx*F* VALUES OF CONSTRAINTS *#***

TRANSFORMATION FORMULA : LOGISTIC
TAKE LOG OF X-DATA - YES
TEMPLATE CURVE INCLUDED : BLTINS

MONOTONICITY NOT REQUIRED

MAXIMUM # OF INFLECTION POINTS : 44
LAMBDA* ADJUSTED BY PROGRAM
PERCENTAGE SMOOTHING SPECIFIED :100.0
COEFFICIENTS OF VARIANCE FUNCTION :

AO > 1.00000

Al : .000000

A2 . .000000



Only one input data file may be fit at a time. The file may
contain as many as 10 curves. The file SAMPLE.ALL contains four
data curves, each with 10 points. The computer will take logs of
the x-data by default, use the logistic transform, and fit a 100%
smooth spline, i.e. a straight line. A 3 point template curve
(BLTIN3, Curve #0) is automatically generated and the
corresponding values for parameters AO, BO, CO and DO will be
fixed at pre-determined values. We allow for up to 44 inflection
points, the maximum possible with 44 points. Finally, by default
we are using an unweighted fit. Values for AO, Al, and A2 ,which
determine the variance model can be entered using the Options
Dialog. Once the file is read in, initial values of the parameters
are calculated and displayed in the Flexifit Parameters Sheet.
(These values are also written to the Flexifit Display Screen and
the Session Data File when the fit is started.)

In this session we do not make use of the Shared Parameters, or
Constant Parameters features. These features work exactly as they
do in ALLFIT, and allow a variety of constraints to be added to
the parameters. The parameters for Curve #0, the template, are
automatically set to constant values. The computer-derived

initial estimates of the parameters can be modified by simply
clicking on the parameter you wish to change in the Flexifit
Parameters sheet. In most cases, automatic estimates will work,
but for more difficult problems, careful, manual readjustment of
these values is required.

To start the fit select Fit Data from the Flexifit menu.

o
ITR# LAMBDA* SSQ SSQ LR % SMOOTHING
LSQ ITR#

1 1.000000E+07 1.008755E+06 1.008773E+06 100.00
4

2 1000000. 1.008602E+06 1.008773E+06 99.98
1

3 3.162278E+06 1.008718E+06 1.008773E+06 99.99
1



4 5.623413E+06 1.008742E+06 1.008773E+06 100.00
5 4.216965E+06 1.008732E+06 1.008773E+06 100.00
6 3.651741E+06 1.008725E+06 1.008773E+06 100.00
7 3.398208E+06 1.008722E+06 1.008773E+06 99.99

8 3.522695E+06 1.008724E+06 1.008773E+06 100.00

---- FINAL LAMBDA, SSQ, AND % SMOOTHING ----
LAMBDA* 3.522695E+06

LAMBDA 3.038175E+09

FINAL WEIGHTED SSQ 1.111305E+06

FINAL SPLINE SSQ 1.008724E+06

% SMOOTHING 100.00

The fit is now complete, after 8 major iterations. Within each of
the major iterations, a variable number of "least-squares"
iterations were made. The goal of the iterations was to bring the
final percentage smoothing to the specified amount, in this case
100%. The smoothing is controlled within the program by a
parameter I*, varied between 10-7 and 107. Actually, there is a
scaled version of this parameter, called I, which is actually

used in the spline subroutine. At this point summary tables are
printed out.

1/25/1989
10:40: 9
*khkkkhkkhkkhhkhkhkkhkhkhkhkhkhkhhkkiihkikihkiik
*kkkkhkkk FI NAL RESU LTS *kkkkikkk
R T P e P S S R S S R S S R S P e S e S e e S o
CONDITIONS : MONOTONIC

1 INFLECTION POINTS
WEIGHTED SSQ IN ORIGINAL COORDINATES: 1111305.0
WEIGHTED SSQ IN SPLINE COORDINATES : 1008724.0

SSQ DUE TO MERGING : 102581.30
MEAN SQUARE (MS) : 41159.430
ROOT MEAN SQUARE (RMS) : 202.87790

NORMALIZED CURVATURE : 2.16680900E-13



---- RESULT OF THE CURRENT FIT ----

Curve No. of Weighted MSSD Residuals No. of
Residuals
# Points Sum of Sqr. + - Runs

0O 3 .4693 N/JA 2 1 3 ++
1 10 6.0747E+05 GOOD 5 5 5 +-——t+-

2 10 2.4385E+05 GOOD 3 7 7 -t
3 10 1.5046E+05 GOOD 5 5 5 4—t++-
4 10 1.0952E+05 GOOD 6 4 6 -++--+++-

Total 43 1.1113E+06 GOOD 21 22 18 +++++---
B s

ctot -t

The conditions of the final curve are described: it is monotonic
with one inflection point, exactly what we would expect of a
logistic curve in the log x scale. The residual sum-of-squares is
printed. The "spline SSQ" is measured after merging or combining
points with nearly the same x-value, after the shifting and
scaling operations have been applied. This is necessary since the
spline routine requires distinct, non-identical x-values at every
data point. The component of the residual sum-of-squares due to
this "merging" is printed. Ordinarily, this should be a small
component of the overall sum-of-squares. The RMS error is
computed by dividing the SSQ by the degrees of freedom, then
taking the square-root. The degrees of freedom are taken to be
the total number of points less the number of true parameters. In



this case there are 43 data points and 16 parameters, or 27
degrees of freedom. In this version (2.1) of FLEXIFIT, no
correction to the degrees of freedom is made for the smoothing
applied to the data. With 100% smoothing, there is no need for
this correction, but as this figure drops, the true degrees of
freedom also drops. Thus, the RMS printed here is often an under-
estimate.

The summary table includes an approximate MSSD test, to evaluate
the randomness of residuals in each curve, the numbers of positive
and negative residuals, the numbers of runs of residuals, and the
sequence of signs of residuals in each curve. One can evaluate

this table visually to check for patterns which would indicate a
lack of fit. No apparent patterns are present in this case. Long
clusters of + or - signs indicates systematic departure from the
fitted curve. With the logistic option, 100% smoothing, used in

this example, we would say that the data appear well described by
a four-parameter logistic.

Next the final parameters are tabulated.

1/25/1989 10:40: 9
---- PARAMETER VALUES ----

Curve Parameter Value Standard RELATIVE
Shared

Name Error Error

Groups

BLTIN3 AO 7.2160E+05

APOMOR Al 1.2327E+04 150.9 1.2%
DOPAMI A2 1.2610E+04 189.4 1.5%
EPINEP A3 1.2888E+04 203.2 1.5%
NOREPI A4 1.2978E+04 202.4 1.5%



BLTIN3 BO 1.000

APOMOR B1 -.7255 7.6341E-02 10.5%
DOPAMI B2 -.3716 5.7438E-02 15.4%
EPINEP B3 -.3652 4.5034E-02 12.3%
NOREPI B4 -.3584 4.7306E-02 13.1%

T ALLFIT 'C" ------- > <--- FLEXIFIT
">

Value

Std. Error
BLTIN3 CO 1.000 .0000
APOMOR C1 4.3614E-07 7.3051E-08 16.7% -6.360
7.2742E-02
DOPAMI C2 5.5544E-06 4.3884E-06 79.0% -5.255
.3431
EPINEP C3 4.4418E-06 2.0254E-06 45.6% -5.352
.1980

NOREPI C4 6.4479E-06 3.3727E-06 52.3% -5.191
2272

POTENCY RATIO

c2/C1 12.74 10.29 80.8%
c1/c2 7.8521E-02 6.3416E-02
C3/C1 10.18 4.947 48.6%
C1/C3 9.8189E-02 4.7698E-02
c4/C1 14.78 8.120 54.9%
Cl/C4 6.7640E-02 3.7150E-02
BLTIN3 DO .0000

APOMOR D1 5437. 234.0 4.3%
DOPAMI D2 3773. 1191. 31.5%
EPINEP D3 5072. 535.2 10.5%
NOREPI D4 53109. 606.1 11.3%




N.B. The Standard Errors printed here are based on the RMS error
tabulated previously. In this version of FLEXIFIT, no correction

is made for the loss of degrees of freedom due to spline
smoothing. Thus, these Standard Errors are an underestimated when
the percentage smoothing is less than 100%.

Now, the observed and predicted data are tabulated. Also, a
graphics data file is created. The first graph shows the original

or LogX version of the curves. Parallelism and the degree of
horizontal or vertical shift or scale can be evaluated here.

Second, a graph of the super-imposed (i.e. shifted and scaled

data) together with the common spline is prepared. Use this graph
to evaluate the common "shape" of the family of curves. When the
logistic transform is used, a third graph is prepared, showing the
common, shifted, scaled data and spline, but in the log-x
coordinate system. This third graph is useful for visually
evaluating the departure of the common shape from a simple
logistic curve.

1/25/1989 10:40: 9

---- ORIGINAL DATA ----

---- CURVE #0 TEMPLATE: BLTINS

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

1 1 -6.00 1.000E-06 .000 -.337 337
2 16 .000 1.00 3.608E+05 3.608E+05 -.563

3 38 6.00 1.000E+06 7.216E+05 7.216E+05 .250



---- CURVE # 1: APOMOR

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

4 38 Neg. Inf. .000 1.257E+04 1.233E+04 243.

5 37 -9.00 1.000E-09 1.221E+04 1.224E+04 -35.8
6 35 -8.00 1.000E-08 1.179E+04 1.191E+04 -119.
7 31 -7.52 3.000E-08 1.127E+04 1.146E+04 -190.
8 25 -7.00 1.000E-O7 1.038E+04 1.057E+04 -183.
9 19 -6.52 3.000E-07 9.828E+03 9.347E+03 481.
10 11 -6.00 1.000E-06 7.918E+03 7.875E+03 42.6
11 6 -5.52 3.000E-06 6.351E+03 6.801E+03 -450.
12 3 -5.00 1.000E-05 6.135E+03 6.081E+03 53.9

13 2 -4.00 1.000E-04 5.724E+03 5.569E+03 155.

---- CURVE # 2: DOPAMI

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

14 38 Neg.Inf. .000 1.256E+04 1.261E+04 -53.5

15 36 -9.00 1.000E-09 1.242E+04 1.226E+04 156.
16 34 -8.00 1.000E-08 1.174E+04 1.184E+04 -95.9
17 30 -7.52 3.000E-08 1.129E+04 1.150E+04 -212.

18 29 -7.00 1.000E-O7 1.133E+04 1.099E+04 345.



1.00
19
1.00
20
1.00
21
1.00
22
1.00
23
1.00

26

22

18

14

8

-6.52

-6.00

-5.52

-5.00

-4.00

3.000E-07 1.033E+04 1.038E+04

-48.8

1.000E-06 9.443E+03 9.553E+03 -110.

3.000E-06 8.610E+03 8.695E+03 -84.5

1.000E-05 7.853E+03 7.710E+03 143.

1.000E-04 5.984E+03 6.023E+03 -38.7

---- CURVE # 3: EPINEP

DATA SPLINE Log X

RESIDUAL WEIGHT

ORIG. X Y

Y CALC

# KNOT #
24 38 Neg. Inf,
1.00

25 32 -8.00
1.00

26 28 -7.00
1.00

27 24 -6.52
1.00

28 21 -6.00
1.00

29 17 -5.52
1.00

30 13 -5.00
1.00

31 10 -4.52
1.00

32 7 -4.00
1.00

33 4 -3.00
1.00

.000

1.000E-08

1.000E-0O7

3.000E-07

1.000E-06

3.000E-06

1.000E-05

3.000E-05

1.209E+04

1.125E+04

1.063E+04

1.024E+04

9.282E+03

8.526E+03

1.213E+04

1.132E+04

1.076E+04

1.002E+04

9.259E+03

8.405E+03

1.294E+04 1.289E+04 52.3

-36.3

-75.3

-133.

221.

22.8

121.

7.560E+03 7.669E+03 -109.

1.000E-04 6.788E+03 6.970E+03 -182.

1.000E-03 6.140E+03 6.021E+03 1109.

---- CURVE # 4: NOREPI

DATA SPLINE Log X

ORIG. X Y

Y CALC



RESIDUAL WEIGHT
# KNOT #

34 38 Neg. Inf. .000 1.292E+04 1.298E+04 -54.9

35 33 -8.00 1.000E-08 1.242E+04 1.229E+04 129.
36 29 -7.00 1.000E-07 1.163E+04 1.157E+04 52.2
37 27 -6.52 3.000E-07 1.096E+04 1.106E+04 -110.
38 23 -6.00 1.000E-06 1.020E+04 1.038E+04 -186.
39 20 -5.52 3.000E-06 9.799E+03 9.670E+03 129.
40 15 -5.00 1.000E-05 8.905E+03 8.848E+03 57.0
41 12 -4.52 3.000E-05 8.202E+03 8.119E+03 82.6
42 9 -4.00 1.000E-04 7.289E+03 7.405E+03 -116.

43 5 -3.00 1.000E-03 6.416E+03 6.398E+03 17.8

Finally, the common spline table is printed, together with the
fitted Y at each data point, the first and second derivatives of
the spline and the effective weight applied to that data point.
Note that there are fewer than 43 points, as some were merged.
Also, the weights now depend on the relative degree of vertical
scaling (A-D) applied to each curve. In the original coordinates,
all weights were 1.00. The vertical scaling has changed these
values. By design, the points corresponding to the template curve
receive very high weights. Since the logistic transform was used,
all X values fall between O and 1. This will not be true in
general. Use of the automatic template has caused all the Y
values to lie between 0 and 1. Again, this is not true in

general.



1/25/1989 10:40: 9

---- SPLINE FUNCTIONS ----

KNOT NORMALIZED NORMALIZED NORMALIZED NORMALIZED
Y WEIGHT
Y Y CALC RESIDUAL

1 1.000E-06 .000

.000

5.207E+11

-4.669E-0O7 4.669E-O7 1.00

2 1.902E-02 4.159E-02 1.902E-02 2.257E-02 1.00

3.043E-06

4.746E+07

3 9.342E-02 .101

6.742E-05
4 122
9.860E-05
5 .141
1.319E-04
6 .198
2.352E-04
7 .243
2.248E-04
8 .255
2.110E-04
9 272
1.863E-04
10 .332
6.766E-05
11 .354
1.298E-05
12 .366
1.456E-05
13 .426
1.320E-04
14 .446
1.570E-04

4.746E+07
137
6.109E+07
.143
5.865E+07
.133
4.746E+07
.220
6.109E+07
.250
7.809E+07
257
5.865E+07
.318
6.109E+07
.360
4.746E+07
.376
5.865E+07
442
6.109E+07
462
7.809E+07

9.342E-02 7.830E-03 1.00

122

141

.198

243

.255

272

332

.354

.366

426

446

1.517E-02

2.322E-03

-6.536E-02

-2.323E-02

-4.378E-03

-1.399E-02

6.183E-03

1.079E-02

1.551E-02

1.615E-02

1.00

1.00

1.00

1.00

1.00

-1.518E-02 1.00

1.00

1.00

1.00 -

1.00 -

1.00 -



15 461
1.642E-04
16 .500
1.717E-04
17 .536
1.879E-04
18 .557
1.950E-04
19 .567
2.036E-04
20 .568
2.027E-04
21 .633
7.303E-05
22 .654
6.344E-06
23 .661
1.108E-05
24 728
1.156E-04
25 744
1.300E-04
26 .747
1.301E-04
27 .750
1.294E-04
28 .800
9.019E-05
29 .817
7.054E-05
30 .874
1.336E-04
31 .875
1.336E-04
32 .903
1.055E-04
33 .910
9.620E-05
34 .913
9.492E-05
35 .939
6.588E-05
36 .961

468
5.865E+07
.500
5.207E+11
539
6.109E+07
547
7.809E+07
.637
4.746E+07
.585
5.865E+07
.661
6.109E+07
.642
7.809E+07
.637
5.865E+07
711
6.109E+07
.718
4.746E+07
742
7.809E+07
.736
5.865E+07
.790
6.109E+07

.842
1.367E+08
.850
7.809E+07
.847
4.746E+07
.898
6.109E+07

927
5.865E+07
.902
7.809E+07
922
4.746E+07
979

461

.500

536

557

567

.568

.633

.654

.661

.728

744

A47

.750

.800

817

874

.875

.903

910

913

.939

961

7.436E-03

-7.749E-07

2.912E-03

-9.566E-03

6.986E-02

1.679E-02

2.826E-02

-1.243E-02

-2.430E-02

-1.705E-02

-2.659E-02

-5.520E-03

-1.432E-02

-9.638E-03

2.520E-02

-2.402E-02

-2.751E-02

-4.639E-03

1.687E-02

-1.085E-02

-1.733E-02

1.769E-02

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00



3.037E-05 7.809E+07
37 .988 .983 988 -5.202E-03 1.00
1.070E-0O5 4.746E+07
38 1.00 1.00 1.00 2.587E-06 1.00
6.072E-22 5.210E+11

We include a graph of the data and the fitted curves. Each curve
in the plot has the same "shape". The curves differ in their
horizontal location and stretch. Plotting the data is
accomplished by selecting Plot from the Flexifit Menu and then
selecting the desired plot from the sub menu. The Plot Set Up
Dialog will be displayed. You simply hit return or click on the
Plot button to create the plot with all the default values.

The Common Shape and Common Shape Linearized plots are also
created using menu selections.

5 IBM-PC Operation
Program Options ("Switches")

Several options are provided as "switches" which are appended to
the DOS command which invokes the program. As many "switches™
may

be chosen and strung together as desired. The available switches
are:

Switches which control the degree of smoothing:

/C Percentage smoothing is not to be specified. Without
this switch, you will be asked to specify the percentage
smoothing.

/1 Inflection points -- number of these is used to
determining smoothing

/M Require curves to be monotonic (also controls degree of
smoothing)



/P Value of I* (lambda-star) to be specified. This is the
quickest mode, if you know the appropriate value for I*.
Try the value 107 for maximal smoothing, 1 for somewhere
around 50% smoothing. Generally, use /X rather than /P
if you wish to use small values of I*

/F Starting value for I* to be specified

/X Final value of I* to be specified

/A Use all available criteria for controlling degree of
smoothing

/B Bell-shaped curves -- use only if you expect non-
monotonic "bell"-like shape

Utility switches:

/D Debug -- for program development only

/U No session file to be created (Session file created by
default)

/T An external template curve is to be provided by user

/V Print the full covariance table

/W Specify values of AO, Al, and A2 for weighted fit. The
model for the variance is Var(Y)=A0 + A1*Y"A2, where Y
is the fitted value of the response in the original
coordinate system. Weights are set inversely
proportional to the modeled variance value.

For example, the DOS command
C>FLEXIFIT/X/M/V

invokes the program FLEXIFIT with the switches X, M and V (final
I*, monotonicity, and print covariance table).

Logistic Curves Example

We now describe a session of FLEXIFIT using the data file SAMPLE
from a previous section. The data represent inhibition of binding
of a radioactively labeled drug by four unlabeled drugs. This
identical data set is described in the ALLFIT User's Guide
(November 1988). This run of FLEXIFIT is arranged so that
identical results are obtained. Thus, this first approach is a

good starting place for previous ALLFIT users. Not described
here, but in common with ALLFIT, FLEXIFIT has the potential to



constrain the parameters to constant values or to values taken by
other parameters. Thus, since the amount of inhibition in the
presence of a zero dose of drug is theoretically identical, it

might be appropriate to constrain Al = A2 = A3 = A4. One can
also attempt the constraint D1 = D2 = D3 = D4 to test if the
maximal inhibitions for all four drugs are the same.

We run FLEXIFIT without any switches. By default, the program
will prompt for Percentage Smoothing. For the first run we
specify 100%. The program will also ask if a logistic transform
is to be applied. We shall use it here. We also choose to take
logs of the data. This combination is identical to applying the
four-parameter logistic function to the data, as in ALLFIT. In
the session, underlining indicates what the user has typed, all
the rest is what the computer has output.

C>FLEXIFIT
-------- FLEXIFIT v. 2.1 -------- 2/16/1989 10:24:19

ENTER ONE DATA FILE NAME PER LINE, END WITH EMPTY LINE.
DATA FILE NAME -->SAMPLE.ALL

DATA FILE NAME --> <CR>

DO WE NEED TO TAKE LOGS OF DATA (Y/N) [Y] ? <CR>
DO WE USE LOGISTIC TRANSFORM (Y/N) [Y] ? <CR>
ENTER MINIMUM % SMOOTHING REQUIRED [0 ] -->100

TEMPLATE CURVE:

CURVE: BLTIN3 --- CURVE # 0O 3-POINT BUILT-IN TEMPLATE
***xx* DATA FILE(S) OPENED *****

DATA FILE: SAMPLE.ALL
CURVE: APOMOR --- CURVE # 1 HAS 10 POINTS.
CURVE: DOPAMI --- CURVE # 2 HAS 10 POINTS.
CURVE: EPINEP --- CURVE # 3 HAS 10 POINTS.
CURVE: NOREPI --- CURVE # 4 HAS 10 POINTS.

**xF* VALUES OF CONSTRAINTS *#***
TRANSFORMATION FORMULA : LOGISTIC
TAKE LOG OF X-DATA - YES
TEMPLATE CURVE INCLUDED : BLTINS



MONOTONICITY NOT REQUIRED

MAXIMUM # OF INFLECTION POINTS : 44
LAMBDA* ADJUSTED BY PROGRAM
PERCENTAGE SMOOTHING SPECIFIED :100.0
COEFFICIENTS OF VARIANCE FUNCTION :

AO : 1.00000
Al . .000000
A2 : .000000

We have specified only one input filename, although more are
possible. The file SAMPLE.ALL contains four data curves, each
with 10 points. The computer will take logs of the x-data by
default, use the logistic transform, and fit a 100% smooth spline,
i.e. a straight line. A 3 point template curve (BLTIN#, Curve #0)

is automatically generated and the corresponding values for
parameters AO, BO, CO and DO will be fixed at pre-determined
values. We all for up to 44 inflection points, the maximum
possible with 44 points. Finally, by default we are using an
unweighted fit. If the switch /W had been specified in the
command line, the user could input values for AO, Al, and A2 which
determine the variance model. We now continue with the session.

SHARED PARAMETERS : <CR>

NONE
CONSTANT PARAMETERS : <CR>
NONE
CURVE Ai Bi Ci
Di
TITLE # = seemmmmmmmmmeme mmmmmmmee oo oo

BLTIN3 O 7.21600E+05C 1.0000 C .00000 C

.00000 C

APOMOR 1 12570. -.40000 -6.5000
5724.0

DOPAMI 2 12556. -.40000 -6.5000
5984.0

EPINEP 3 12940. -.40000 -5.5000

6140.0



NOREPI 4 12923. -.40000 -5.5000
6416.0
REMARK: C:CONSTANT; S:SHARED.

ARE THESE PARAMETERS O.K.? (Y/N) -->Y

In this session we do not make use of the Shared Parameters, or
Constant Parameters features. These features work exactly as they
do in ALLFIT, and allow a variety of constraints to be added to

the parameters. The parameters for Curve #0, the template, are
automatically set to constraint values. Finally, you are given

the option to reset the computer-derived initial estimates of the
parameters. In most cases, automatic estimates will work, but for
more difficult problems, careful, manual readjustment of these
values is required.

ITR# LAMBDA* SSQ SSQ LR % SMOOTHING
LSQ ITR#

1 1.000000E+07 1.008755E+06 1.008773E+06 100.00
4

2 1000000. 1.008602E+06 1.008773E+06 99.98
1

3 3.162278E+06 1.008718E+06 1.008773E+06 99.99

4 5.623413E+06 1.008742E+06 1.008773E+06 100.00
5 4.216965E+06 1.008732E+06 1.008773E+06 100.00
6 3.651741E+06 1.008725E+06 1.008773E+06 100.00
7 3.398208E+06 1.008722E+06 1.008773E+06 99.99

8 3.522695E+06 1.008724E+06 1.008773E+06 100.00
1

---- FINAL LAMBDA, SSQ, AND % SMOOTHING ----
LAMBDA* 3.522695E+06

LAMBDA 3.038175E+09

FINAL WEIGHTED SSQ 1.111305E+06



FINAL SPLINE SSQ 1.008724E+06

% SMOOTHING 100.00
1/25/1989
10:40: 9
*Ehhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkikik
*kkkkkk FI NAL RESU LTS *,kkkkkk
*hhkkhkkhkkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkik
CONDITIONS : MONOTONIC

1 INFLECTION POINTS
WEIGHTED SSQ IN ORIGINAL COORDINATES: 1111305.0
WEIGHTED SSQ IN SPLINE COORDINATES : 1008724.0

SSQ DUE TO MERGING : 102581.30

MEAN SQUARE (MS) : 41159.430

ROOT MEAN SQUARE (RMS) : 202.87790
NORMALIZED CURVATURE : 2.16680900E-13

---- RESULT OF THE CURRENT FIT ----

Curve No. of Weighted MSSD Residuals No. of
Residuals
# Points Sum of Sqr. + - Runs

0 3 .4693 N/A 2 1 3 +-+
1 10 6.0747E+05 GOOD 5 5 5 4-——++-

2 10 2.4385E+05 GOOD 3 7 7 -4+
3 10 1.5046E+05 GOOD 5 5 5 4--t++-
4 10 1.0952E+05 GOOD 6 4 6 -++-—+++-

Total 43 1.1113E+06 GOOD 21 22 18 +++++---
-ttt



B

(See Macintosh chapter for an explanation of the output.)

1/25/1989 10:40: 9
---- PARAMETER VALUES ----

Curve Parameter Value Standard RELATIVE
Shared

Name Error Error

Groups

BLTIN3 AO 7.2160E+05

APOMOR Al 1.2327E+04 150.9 1.2%
DOPAMI A2 1.2610E+04 189.4 1.5%
EPINEP A3 1.2888E+04 203.2 1.5%
NOREPI A4 1.2978E+04 202.4 1.5%

BLTIN3 BO 1.000

APOMOR B1 -. 7255 7.6341E-02 10.5%
DOPAMI B2 -.3716 5.7438E-02 15.4%
EPINEP B3 -.3652 4.5034E-02 12.3%
NOREPI B4 -.3584 4.7306E-02 13.1%

. ALLFIT 'C" ------- > <--- FLEXIFIT
'O >

Value

Std. Error
BLTIN3 CO 1.000 .0000

APOMOR C1 4.3614E-07 7.3051E-08 16.7% -6.360
7.2742E-02
DOPAMI C2 5.5544E-06 4.3884E-06 79.0% -5.255



3431
EPINEP C3 4.4418E-06 2.0254E-06 45.6% -5.352
.1980
NOREPI C4 6.4479E-06 3.3727E-06 52.3% -5.191
2272

POTENCY RATIO

c2/C1 12.74 10.29 80.8%
c1/cC2 7.8521E-02 6.3416E-02
C3/C1 10.18 4.947 48.6%
C1/C3 9.8189E-02 4.7698E-02
c4/C1 14.78 8.120 54.9%
Cl/C4 6.7640E-02 3.7150E-02
BLTIN3 DO .0000

APOMOR D1 5437. 234.0 4.3%
DOPAMI D2 3773. 1191. 31.5%
EPINEP D3 5072. 535.2 10.5%
NOREPI D4 53109. 606.1 11.3%

1/25/1989 10:40: 9

---- ORIGINAL DATA ----

---- CURVE #0 TEMPLATE: BLTINS3

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #



1 1 -6.00 1.000E-06 .000 -.337 337
1.00

2 16 .000 1.00 3.608E+05 3.608E+05 -.563
1.00

3 38 6.00 1.000E+06 7.216E+05 7.216E+05 .250
1.00

---- CURVE # 1: APOMOR

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

4 38 Neg. Inf. .000 1.257E+04 1.233E+04 243.
5 37 -9.00 1.000E-09 1.221E+04 1.224E+04 -35.8

6 35 -8.00 1.000E-08 1.179E+04 1.191E+04 -119.
1.00

7 31 -7.52 3.000E-08 1.127E+04 1.146E+04 -190.
1.00

8 25 -7.00 1.000E-O7 1.038E+04 1.057E+04 -183.
1.00

9 19 -6.52 3.000E-07 9.828E+03 9.347E+03 481.
1.00

10 11 -6.00 1.000E-06 7.918E+03 7.875E+03 42.6
1.00

11 6 -5.52 3.000E-06 6.351E+03 6.801E+03 -450.
1.00

12 3 -5.00 1.000E-05 6.135E+03 6.081E+03 53.9
1.00

13 2 -4.00 1.000E-04 5.724E+03 5.569E+03 155.
1.00

---- CURVE # 2: DOPAMI

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

14 38 Neg.Inf. .000 1.256E+04 1.261E+04 -53.5
1.00



15
1.00
16
1.00
17
1.00
18
1.00
19
1.00
20
1.00
21
1.00
22
1.00
23
1.00

36

34

30

29

26

22

18

14

8

-9.00

-8.00

-7.52

-7.00

-6.52

-6.00

-5.52

-5.00

-4.00

1.000E-09 1.242E+04 1.226E+04

1.000E-08 1.174E+04 1.184E+04

3.000E-08 1.129E+04 1.150E+04

1.000E-O7 1.133E+04 1.099E+04

3.000E-07 1.033E+04 1.038E+04

1.000E-06 9.443E+03 9.553E+03

3.000E-06 8.610E+03 8.695E+03

1.000E-05 7.853E+03 7.710E+03

1.000E-04 5.984E+03 6.023E+03

---- CURVE # 3: EPINEP
DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

156.

-95.9

-212.

345.

-48.8

-110.

-84.5

143.

-38.7

# KNOT #
24 38 Neg. Inf,
1.00

25 32 -8.00
1.00

26 28 -7.00
1.00

27 24 -6.52
1.00

28 21 -6.00
1.00

29 17 -5.52
1.00

30 13 -5.00
1.00

31 10 -4.52
1.00

32 7 -4.00

.000 1.294E+04 1.289E+04 52.3

1.000E-08 1.209E+04 1.213E+04

1.000E-07 1.125E+04 1.132E+04

3.000E-07 1.063E+04 1.076E+04

1.000E-06 1.024E+04 1.002E+04

3.000E-06 9.282E+03 9.259E+03

1.000E-05 8.526E+03 8.405E+03

3.000E-05 7.560E+03 7.669E+03

1.000E-04 6.788E+03 6.970E+03

-36.3

-75.3

-133.

221.

22.8

121.

-109.

-182.



33 4 -3.00 1.000E-03 6.140E+03 6.021E+03 119.
1.00

---- CURVE # 4: NOREPI

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

34 38 Neg. Inf. .000 1.292E+04 1.298E+04 -54.9

35 33 -8.00 1.000E-08 1.242E+04 1.229E+04 129.

1.00
36 29 -7.00 1.000E-07 1.163E+04 1.157E+04 52.2
1.00
37 27 -6.52 3.000E-07 1.096E+04 1.106E+04 -110.
1.00
38 23 -6.00 1.000E-06 1.020E+04 1.038E+04 -186.
1.00
39 20 -5.52 3.000E-06 9.799E+03 9.670E+03 129.
1.00
40 15 -5.00 1.000E-05 8.905E+03 8.848E+03 57.0
1.00
41 12 -4.52 3.000E-05 8.202E+03 8.119E+03 82.6
1.00
42 9 -4.00 1.000E-04 7.289E+03 7.405E+03 -116.
1.00

43 5 -3.00 1.000E-03 6.416E+03 6.398E+03 17.8

We include a graph of the data and the fitted curves. Each curve
in the plot has the same "shape™. The curves differ in their
horizontal location and stretch. Plotting the data is
accomplished with program GRAFIT, described in a later section.



Here is the graph of the linearized common spline.

1/25/1989 10:40: 9

---- SPLINE FUNCTIONS ----

KNOT NORMALIZED NORMALIZED NORMALIZED NORMALIZED
Y WEIGHT
Y Y CALC RESIDUAL

1 1.000E-06 .000

.000

5.207E+11

-4.669E-07 4.669E-O7 1.00

2 1.902E-02 4.159E-02 1.902E-02 2.257E-02 1.00

3.043E-06

4.746E+07

3 9.342E-02 .101

6.742E-05
4 122
9.860E-05
5 .141
1.319E-04
6 .198
2.352E-04
7 .243
2.248E-04
8 .255
2.110E-04
9 272
1.863E-04
10 .332
6.766E-05
11 .354
1.298E-05

4.746E+07
137
6.109E+07
.143
5.865E+07
.133
4.746E+07
.220
6.109E+07
.250
7.809E+07
257
5.865E+07
.318
6.109E+07
.360
4.746E+07

9.342E-02 7.830E-03 1.00

122 1.517E-02 1.00

141 2.322E-03 1.00

198  -6.536E-02 1.00
243  -2.323E-02 1.00
255 -4.378E-03 1.00
272 -1.518E-02 1.00
332 -1.399E-02 1.00
.354 6.183E-03 1.00



12 .366
1.456E-05
13 .426
1.320E-04
14 .446
1.570E-04
15 461
1.642E-04
16 .500
1.717E-04
17 .536
1.879E-04
18 .557
1.950E-04
19 .567
2.036E-04
20 .568
2.027E-04
21 .633
7.303E-05
22 .654
6.344E-06
23 .661
1.108E-05
24 728
1.156E-04
25 744
1.300E-04
26 .747
1.301E-04
27 .750
1.294E-04
28 .800
9.019E-05
29 .817
7.054E-05
30 .874
1.336E-04
31 .875
1.336E-04
32 .903
1.055E-04
33 .910

376
5.865E+07
442
6.109E+07
462
7.809E+07
468
5.865E+07
.500
5.207E+11
539
6.109E+07
547
7.809E+07
.637
4.746E+07
.585
5.865E+07
.661
6.109E+07
.642
7.809E+07
.637
5.865E+07
711
6.109E+07
.718
4.746E+07
742
7.809E+07
.736
5.865E+07
.790
6.109E+07

.842
1.367E+08
.850
7.809E+07
.847
4.746E+07
.898
6.109E+07

927

.366

426

446

461

.500

536

557

567

.568

.633

.654

.661

.728

744

A47

.750

.800

817

874

.875

.903

910

1.079E-02 1.00

1.551E-02 1.00
1.615E-02 1.00
7.436E-03 1.00
-7.749E-07 1.00
2.912E-03 1.00
-9.566E-03 1.00
6.986E-02 1.00
1.679E-02 1.00
2.826E-02 1.00
-1.243E-02 1.00
-2.430E-02 1.00
-1.705E-02 1.00
-2.659E-02 1.00
-5.520E-03 1.00
-1.432E-02 1.00
-9.638E-03 1.00
2.520E-02 1.00
-2.402E-02 1.00
-2.751E-02 1.00
-4.639E-03 1.00

1.687E-02 1.00



9.620E-05 5.865E+07
34 .913 902 913 -1.085E-02 1.00
9.492E-05 7.809E+07
35 .939 922 939 -1.733E-02 1.00
6.588E-05 4.746E+07
36 .961 979 961 1.769E-02 1.00
3.037E-05 7.809E+07
37 .988 .983 988 -5.202E-03 1.00
1.070E-0O5 4.746E+07
38 1.00 1.00 1.00 2.587E-06 1.00
6.072E-22 5.210E+11

DO YOU WANT A NEW FIT (SAME CONSTRAINTS) (Y/N) [N] ?<CR>
THIS SESSION WAS RECORDED IN FLEX1 .SES
DO YOU WANT TO FIT OTHER DATA (Y/N) [N] ?<CR>

1/25/1989 10:42:31

Generalized Logistic Example

We again run FLEXIFIT without any switches. To explore the
potential for a better fit using splines, we specify 50%
smoothing. This will require that the residual sum-of-squares be
reduced 50% from what would be obtained using a straight line.
Whether or not this results in a significant improvement in fit
can be evaluated from the graphs, the runs test, or via the use of
a test based on the apparent degrees of freedom. This latter
calculation will be implemented in forthcoming versions of
FLEXIFIT.

N.B. The RMS error and Standard Errors for parameters in this
example have not been corrected for the effect of 50% smoothing.
(This will be included in future versions of FLEXIFIT). Thus,

these values should be seen as under-estimates of the true RMS and
Standard Errors.

-------- FLEXIFIT v. 2.1 -------- 1/25/1989 10:42:36



TEMPLATE CURVE:

CURVE: BLTIN3 --- CURVE # 0 3-POINT BUILT-IN TEMPLATE
wxxxx DATA FILE(S) OPENED *xxx

DATA FILE: SAMPLE.ALL
CURVE: APOMOR --- CURVE # 1 HAS 10 POINTS.
CURVE: DOPAMI --- CURVE # 2 HAS 10 POINTS.
CURVE: EPINEP --- CURVE # 3 HAS 10 POINTS.
CURVE: NOREPI --- CURVE # 4 HAS 10 POINTS.
*FxF* VALUES OF CONSTRAINTS *#***

TRANSFORMATION FORMULA : LOGISTIC
TAKE LOG OF X-DATA - YES
TEMPLATE CURVE INCLUDED : BLTINS

MONOTONICITY NOT REQUIRED

MAXIMUM # OF INFLECTION POINTS : 44
LAMBDA* ADJUSTED BY PROGRAM
PERCENTAGE SMOOTHING SPECIFIED : 50.0
COEFFICIENTS OF VARIANCE FUNCTION :

AO : 1.00000
Al : .000000
A2 : .000000

SHARED PARAMETERS :

NONE
CONSTANT PARAMETERS :
NONE
CURVE Ai Bi Ci
Di
TITLE # = ~--c----mmmmemm cmmmmeccee e

BLTIN3 O 7.21600E+O05C 1.0000 C .00000 C
.00000 C

APOMOR 1 12570. -.40000 -6.5000
5724.0
DOPAMI 2 12556. -.40000 -6.5000
5984.0
EPINEP 3 12940. -.40000 -5.5000
6140.0
NOREPI 4 12923. -.40000 -5.5000
6416.0

REMARK: C:CONSTANT; S:SHARED.



ARE THESE PARAMETERS O.K.? (Y/N) -->Y

ITR# LAMBDA* SSQ SSQ LR % SMOOTHING
LSQ ITR#

1 1.000000E+07 1.008755E+06 1.008773E+06 100.00
4

2 1000000. 1.008602E+06 1.008773E+06 99.98
1

3 100000. 1.007096E+06 1.008773E+06 99.83

4 10000.0 988773. 1.005812E+06 98.31
5 1000.00 924484. 1.102685E+06 83.84

6 100.000 702666. 1.699977E+06 41.33
227 316.228 811544. 1.314346E+06 61.75
118 177.828 754182. 1.500709E+06 50.26
169 133.352 727756. 1.601820E+06 45.43
1410 153.993 736894. 1.548132E+06 47.60
1011 165.482 747425. 1.526149E+06 48.97
! 12 171.544 750823. 1.513362E+06 49.61
5

---- FINAL LAMBDA, SSQ, AND % SMOOTHING ----
LAMBDA* 177.828

LAMBDA 139456.

FINAL WEIGHTED SSQ 798971.

FINAL SPLINE SSQ  755120.

% SMOOTHING 50.63

In this run, 12 iterations were required. Some of these major
iterations included as many as 22 least-squares iterations. Thus,
the computing time required goes up as the percentage smoothing
drops. In some instances, a notation of "not converged"” will be



found for a particular iteration. In such cases, I* will be
increased, and convergence should then be obtained. The minimal
degree of smoothing will then be determined by the ability of the
algorithm to converge.

1/25/1989 10:42:36

*hhkkkhkhkkkikhkkkhkhkkkhkihkkhkihkhkkihkhkiiikkiik

*kkkkkik FI NAL RESU LTS *kkkkkk

*hhkkkhkhkkkikkhkkkhkhkkkhkihkkhkihkhkkihkhkihikkiik

CONDITIONS : MONOTONIC

1 INFLECTION POINTS
WEIGHTED SSQ IN ORIGINAL COORDINATES: 798971.10
WEIGHTED SSQ IN SPLINE COORDINATES : 755119.60

SSQ DUE TO MERGING : 43851.560

MEAN SQUARE (MS) : 29591.520

ROOT MEAN SQUARE (RMS) : 172.02190
NORMALIZED CURVATURE : 1.86871100E-05

---- RESULT OF THE CURRENT FIT ----

Curve No. of Weighted MSSD Residuals No. of
Residuals
# Points Sum of Sqr. + - Runs

o 3 .1293 N/A 1 2 2 -+
1 10 3.8182E+05 GOOD 5 5 5 +-——++-

2 10 2.6175E+05 GOOD 4 © 6 -+--+---
3 10 6.8763E+04 GOOD 4 © 7 +-——t-+-
4 10 8.6645E+04 GOOD 5 5 8 ++-——+-+-

Total 43 7.9897E+05 GOOD 19 24 19 -++++-+-
e e S O S



——b e
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1/25/1989 10:42:36
---- PARAMETER VALUES ----

Curve Parameter Value Standard RELATIVE
Shared

Name Error Error

Groups

BLTIN3 AO 7.2160E+05

APOMOR A1l 1.2373E+04 132.9 1.0%
DOPAMI A2 1.2593E+04 155.6 1.2%
EPINEP A3 1.2921E+04 174.4 1.3%
NOREPI A4 1.2982E+04 172.9 1.3%

BLTIN3 BO 1.000

APOMOR Bl  -.7220 6.1292E-02 8.4%

DOPAMI B2  -4123  4.2126E-02 10.2%

EPINEP B3  -3843 3.2615E-02 8.4%

NOREPI B4  -3785 3.3493E-02 8.8%
S ALLFIT 'C' -=----- > <--- FLEXIFIT

o



Std. Error
BLTIN3 CO 1.000 .0000
APOMOR C1 4.4751E-07 5.9955E-08 13.4% -6.349

5.8184E-02
DOPAMI C2 3.5839E-06 1.5197E-06 42.4% -5.443

1841
EPINEP C3 3.5923E-06 1.0137E-06 28.2% -5.443

1226
NOREPI C4 5.5261E-06 1.7357E-06 31.4% -5.257

.1364

POTENCY RATIO

c2/C1 8.051 3.580 44.5%
c1/c2 1242 5.5236E-02
C3/C1 8.049 2.514 31.2%
C1/C3 1242 3.8808E-02
c4/C1 12.37 4.223 34.1%
Cl/C4 8.0852E-02 2.7608E-02
BLTIN3 DO .0000

APOMOR D1 5529. 175.7 3.1%
DOPAMI D2 4620. 596.7 12.9%
EPINEP D3 5485. 301.3 5.4%
NOREPI D4 5698. 337.8 5.9%

1/25/1989 10:42:36

---- ORIGINAL DATA ----

---- CURVE #0 TEMPLATE: BLTINS3



DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT
# KNOT #

1 1 -6.00 1.000E-06 .000 6.135E-02 -
6.135E-02 1.00

2 16 .000 1.00 3.608E+05 3.608E+05 -.313
1.00

3 39 6.00 1.000E+06 7.216E+05 7.216E+05 .188
1.00

---- CURVE # 1: APOMOR

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

4 39 Neg. Inf. .000 1.257E+04 1.237E+04 197.

5 38 -9.00 1.000E-09 1.221E+04 1.228E+04 -69.7

1.00

6 36 -8.00 1.000E-08 1.179E+04 1.190E+04 -107.
1.00

7 31 -7.52 3.000E-08 1.127E+04 1.141E+04 -138.
1.00

8 26 -7.00 1.000E-O7 1.038E+04 1.051E+04 -130.
1.00

9 20 -6.52 3.000E-07 9.828E+03 9.429E+03 399.
1.00

10 12 -6.00 1.000E-06 7.918E+03 7.903E+03 15.3
1.00

11 6 -5.52 3.000E-06 6.351E+03 6.693E+03 -342.
1.00

12 3 -5.00 1.000E-05 6.135E+03 6.052E+03 82.5
1.00

13 2 -4.00 1.000E-04 5.724E+03 5.636E+03 88.3

---- CURVE # 2: DOPAMI
DATA SPLINE Log X ORIG. X Y Y CALC



RESIDUAL WEIGHT
# KNOT #

14 39 Neg.Inf. .000 1.256E+04 1.259E+04 -36.8

15 37 -9.00 1.000E-09 1.242E+04 1.229E+04 134.
16 35 -8.00 1.000E-08 1.174E+04 1.185E+04 -105.
17 32 -7.52 3.000E-08 1.129E+04 1.149E+04 -204.
18 29 -7.00 1.000E-O7 1.133E+04 1.096E+04 370.
19 25 -6.52 3.000E-07 1.033E+04 1.034E+04 -8.36
20 22 -6.00 1.000E-06 9.443E+03 9.568E+03 -125.
21 18 -5.52 3.000E-06 8.610E+03 8.753E+03 -143.
22 13 -5.00 1.000E-05 7.853E+03 7.724E+03 129.

23 7 -4.00 1.000E-04 5.984E+03 5.979E+03 5.16

---- CURVE # 3: EPINEP

DATA SPLINE Log X ORIG. X Y Y CALC
RESIDUAL WEIGHT

# KNOT #

24 39 Neg. Inf. .000 1.294E+04 1.292E+04 18.7

25 33 -8.00 1.000E-08 1.209E+04 1.212E+04 -28.0
26 28 -7.00 1.000E-07 1.125E+04 1.128E+04 -35.0
27 24 -6.52 3.000E-07 1.063E+04 1.072E+04 -92.6
28 21 -6.00 1.000E-06 1.024E+04 1.005E+04 192.

29 17 -5.52 3.000E-06 9.282E+03 9.332E+03 -50.1



1.00
30
1.00
31
1.00
32
1.00
33
1.00

14

10

8

4

-5.00

-4.52

-4.00

-3.00

1.000E-05 8.526E+03 8.439E+03 86.9

3.000E-05 7.560E+03 7.608E+03

-48.3

1.000E-04 6.788E+03 6.870E+03 -81.6

1.000E-03 6.140E+03 6.098E+03 42.5

---- CURVE # 4: NOREPI

DATA SPLINE Log X

RESIDUAL WEIGHT

ORIG. X Y

Y CALC

# KNOT #
34 39 Neg. Inf.
1.00

35 34 -8.00
1.00

36 30 -7.00
1.00

37 27 -6.52
1.00

38 23 -6.00
1.00

39 19 -552
1.00

40 15 -5.00
1.00

41 11 -452
1.00

42 9 -4.00
1.00

43 5 -3.00

6.348E-03 1.00

.000

1.000E-08

1.000E-O7

3.000E-07

1.000E-06

3.000E-06

1.000E-05

3.000E-05

1.242E+04

1.163E+04

1.096E+04

1.020E+04

9.799E+03

8.905E+03

8.202E+03

1.228E+04

1.154E+04

1.103E+04

1.039E+04

9.753E+03

8.919E+03

8.108E+03

1.292E+04 1.298E+04 -59.5

141.

84.1

-73.9

-198.

46.4

-13.9

93.6

1.000E-04 7.289E+03 7.309E+03 -20.2

1.000E-03 6.416E+03 6.416E+03
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---- SPLINE FUNCTIONS ----

KNOT NORMALIZED NORMALIZED NORMALIZED NORMALIZED
Y WEIGHT
# X Y Y CALC RESIDUAL

1 1.000E-06 .000 8.502E-08 -8.502E-08 .792
.000 5.207E+11

2 1.973E-02 2.853E-02 1.562E-02 1.290E-02 .792 -
1.253E-02 4.685E+07

3 9.596E-02 8.857E-02 7.652E-02 1.205E-02 .814
.600 4.685E+07

4 .103 8.808E-02 8.237E-02 5.715E-03 .819
715 5.530E+07

5 .123 9.854E-02 9.854E-02 8.946E-O7 .837
1.12 5.306E+07

6 .202 120 170 -5.004E-02 .991
2.76 4.685E+07

7 .202 A71 170 6.477E-04 .991
2.76 6.356E+07

8 .218 75 186  -1.097E-02 1.03
2.56 5.530E+07

9 .251 218 221 -2.768E-03 1.11
1.88 5.306E+07

10 .307 279 286 -6.499E-03 1.17
574 5.530E+07

11 .345 344 331 1.285E-02 1.18 -
516 5.306E+07

12 .359 .349 347 2.241E-03 1.17 -
.769 4.685E+07

13 .396 405 .389 1.619E-02 1.13 -
1.40 6.356E+07

14 .403 409 397 1.169E-02 1.12 -
141 5.530E+07

15 .444 440 442  -1.908E-03 1.06 -
1.13 5.306E+07

Yl



16
817
17
AT7S
18
778
19
1.53
20
1.74
21
536
22
.166
23
691
24
1.36
25
1.37
26
1.36
27
1.31
28
.306
29

30

31
1.49
32
1.52
33
1.22
34
1.08
35
1.09
36
.860
37

.500 .500

5.207E+11

517 511

5.530E+07

.518 .500

6.356E+07

.558 .563

5.306E+07

572 .628

4.685E+07

.620 .639

5.530E+07

.629 .605

6.356E+07

.656 617

5.306E+07

722 .692

5.530E+07

.735 716

6.356E+07

q47 .709

4.685E+07

/51 722

5.306E+07

.798 A7S

5.530E+07

.814 .842
7.898E-02 6.356E+07
.820 .814
3.336E-02 5.306E+07
.876 .839

4.685E+07

.878 .836

6.356E+07

.906 .888

5.530E+07

916 .923

5.306E+07

919 .893

6.356E+07

.940 915

4.685E+07

967 978

.500

S517

.518

557

570

.613

621

.645

704

A17

.728

732

.780

.796

.802

.859

.862

.892

.904

.907

.930

962

-4.172E-07 1.01

-6.743E-03 .996

-1.794E-02 .995

6.371E-03 .950

5.824E-02 .927

2.585E-02 .871

-1.564E-02 .868

-2.720E-02 .876

-1.246E-02 .943

-1.049E-03 .961

-1.896E-02 .977

-1.015E-02 .982

-4.709E-03 1.02

4.643E-02 1.02

1.155E-02 1.02

-2.017E-02 1.06

-2.556E-02 1.07

-3.766E-03 1.11

1.932E-02 1.12

-1.316E-02 1.12

-1.560E-02 1.14

1.687E-02 1.16



279 6.356E+07

38 .988 976 986 -1.019E-02 1.16
154 4.685E+07

39 1.00 1.00 1.00 1.694E-06 1.16
6.234E-18 5.209E+11

DO YOU WANT A NEW FIT (SAME CONSTRAINTS) (Y/N) [N] ?<CR>
THIS SESSION WAS RECORDED IN FLEX2 .SES
DO YOU WANT TO FIT OTHER DATA (Y/N) [N] ?<CR>

1/25/1989 10:46:10
Creating Plots on the IBM-PC

Plotting is performed on the IBM-PC using a separate program
called GRAFIT. This program is distributed on the same floppy
diskette with the FLEXIFIT program.

The GRAFIT program plots the data written to .grf files by
FLEXIFIT.

GRAFIT has been designed to work on machines with one of the
following graphics cards.

Hercules
CGA

EGA
VGA
MCGA

The type of video card is automatically detected by the program.

GRAFIT supports laser printers that use the picture drawing
language PostScript. The best hard copy plots are achieved using
a laser printer. Dot matrix printers are also supported. In
previous versions of GRAFIT, the plots were produced at screen
resolution. The software has now takes advantage of the higher
resolution available on 9 pin dot matrix printers. GRAFIT uses a
printing protocol which works on most dot matrix printers.



In order to support still more printers, GRAFIT is capable of
producing a Lotus 123 .PIC file. This file can be printed using
the print graph program distributed with Lotus 123 version 2.

The GRAFIT program exits as a single executable file. Your may
run it from a floppy drive or copy it to your hard disk.

Start the program by typing grafit at the DOS prompt.
> grafit
You will be prompted for a .grf file name.
Graphics file name (no extension) ? gsample
(Don't enter the .grf file extension, it is assumed.)
The file gsample.grf, found on the Flexifit distribution diskette,

will be used to demonstrate GRAFIT operation.

The following plot will be displayed on the screen.

The line at the bottom of the screen contains 7 different
commands...

C:Change N:Next F:First K:Key P:Print R:Restart Q:Quit
A command is entered by typing the first letter of the command.
No return is necessary. These commands are only active while a

plot is on the screen and the commands are displayed at the bottom
of the screen.

Change Command

Type the letter 'C’, the following screen will be displayed.
Graph Set Up Screen

Label 1: ALLFIT-PC: GSAMPLE.ALL



Label 2: FIT # 1 SESSION: GSAMPLE.SES

Title: title
X label: x
Y label: y

X min: -1.0000E+01

X max: -3.0000E+00

y min: 5.0000E+03

y max: 1.3000E+04

X divisions (1-15): 2

Y divisions (1-15): 2

Size of plotted points (1-10): 3

F2:Accept new values Esc:Cancel

You can change the plot labels or axis limits. The number of tick
marks on the X and Y axis can be adjusted along with the size of
the symbols used to plot the data points. Strike the Esc key to
ignore your changes and return to the plot. F2 will register your
changes and display the updated plot.

Next Command

To display the next plot in the file, type the letter 'N*'. The
graph file will be read and the next plot will be displayed on the
screen. If no more plots are in the file a message to this effect
will be displayed.

First Command

You can display the first plot in the file at any time by typing
the letter 'F'.

Key (Legend) Command

After entering 'K' from the keyboard you will be presented with
the following screen.

Key Set Up Screen

Write curve labels? (Y/N): N



Name of curve 1: Draw curve 1? (Y/N): Y
Name of curve 2: Draw curve 2? (Y/N): Y

F2:Accept new values Esc:Cancel

You may enter a label for each curve in the plot. Initially the
key or legend is not displayed. Display the key by answering "Y'
to the question "Write curve labels?” . The key consisting of the
curve labels and associated symbols will be displayed to the right
of the plot. Be careful when printing not to position the plot

too far to the right as this may push the key off of the page.

You may choose to display or not display any particular curve.
Answering yes to the question 'Draw curve 1?" will cause the
curve to be drawn; answer no and the curve will not be drawn.

Print Command

GRAFIT supports several methods of printing your plots. Printing
may be done directly to a 9 pin dot matrix printer. Alternately a
PostScript file may be created and later sent to a PostScript
printer. Lastly a Lotus 123 .PIC format file may be created. All
of these methods are initiated from the print screen.

While a plot is displayed on the screen, entering "P* will result
in the display of the print menu.

Printer Set Up Screen

These coordinates alter the size and position of the plot box.
The lower left hand corner of the page is (0,0).

Upper Left x page coordinate (inches): 2.00
Upper Left Y page coordinate (inches): 9.00
Lower Right x page coordinate (inches): 7.00
Lower Right y page coordinate (inches): 6.00



Post Script File (.ps will be appended): gsample
Lotus 123 file (.pic will be appended):..gsample

F1:PostScript F2:Save F3:Dot Matrix F4:Lotus Esc:Cancel

Creating a PostScript File

Entering F1 will result in the creation (or replacement) of the
PostScript file gsample.ps. The default PostScript file name is
the prefix of the .grf file. You may enter your own file name
instead of using the default. To print this file you will have to
exit this program (i.e. hit escape and then Quit), and then
download the PostScript file gsample.ps to your laser printer.
The page coordinates apply to PostScript file.

Dot Matrix Printing

Enter F3 to print the plot on a dot matrix printer attached to
printer port LPT1. Once printing has started you may interrupt it
by striking any key. GRAFIT supports 9 pin dot matrix printers
which emulate the Epson FX series of printers. This method
creates a plot at a much higer resolution than available with
screen dumps. You may alter the size of the plot using the page
coordinates.

Creating Lotus 123 Format Files

Entering F4 will result in the creation of the Lotus 123 .PIC file
gsample.pic. (You may enter a different file name. .PIC is always
appended.) This .PIC file may be printed using the Lotus 123
program Printgraph which is supplied with version 2 of Lotus 123.
This enables GRAFIT to indirectly support a wide range of
printers. Note, the page coordinates do not apply to this

method.

F1, F2, F3 or F4 will result in your changes being saved. If you
make changes in this screen and then enter Esc, without having
entered F1, F2 or F3, then your changes will not be saved.



Restart Command

The restart command is used to change the .grf file.

Quit Command

Enter Q" to exit the program. Again, this command is only active
when a plot is displayed.

Prt-Screen Keyboard Key

The prt-scr key is supported only when a plot is being displayed.
Screen dumps are supported in Hercules, CGA, EGA and VGA video
modes. You do not have to have the MS-DOS graphics driver loaded
to use this function.

GRAFIT file format

The file format for GRAFIT is discussed below, along with a
listing of a sample graph file. This file is included on the disk
(gsample.grf). The number of lines in any graph file is variable,
depending on the number of curves. Here is a listing of
gsample.grf.

ALLFIT-PC: GSAMPLE.ALL FIT # 1
SESSION: GSAMPLE.SES

These first two lines are graph labels. They will
appear at the top of the graph.
2
This line is the number of curves.
10 10
These two numbers indicate how many points are in each
curve respectively. Remember that if the number of
curves were 3, then there would be three numbers here.
-10 -3 1
5500 13000 999.9999

The first line is the minimum x value, the maximum x
value, and the default step value for the x axis. The
second line contains the same values for the y axis.



These values are for the whole graph, not any specific
curve.

-10 12570

-9 12208

-8 11789

-7.522879 11273

-7 10382

-6.522879 9828

-6 7918

-5.522879 6351

-5 6135

-4 5724
These points are the x,y pairs for the 10 points in
curve 1.

-10 12556

-9 12421

-8 11743

-7.522879 11287

-7 11333

-6.522879 10328

-6 9443

-5.522879 8610

-5 7853

-4 5984
These points are the X,y pairs for the 10 points in
curve 2.

55
This number is the number of lines to follow. The lines
contain X,y pairs for the two endpoints of line
segments. These line segments make up the curve on the
graph. These are for curve 1.

-10 12299.78 -9.872727 12296.29

-9.872727 12296.29 -9.745455 12291.98
-9.745455 12291.98 -9.618182 12286.63
-9.618182 12286.63 -9.49091 12280.02
-9.49091 12280.02 -9.363637 12271.83

Not all 55 lines of numbers are shown here.



-3.509097 5503.595 -3.381825 5492.997
-3.381825 5492.997 -3.254552 5484.425
-3.254552 5484.425 -3.127279 5477.498
-3.127279 5477.498 -3.000007 5471.9

55
This number is the number of lines to follow. The lines
contain X,y pairs for the two endpoints of line
segments. These line segments make up the curve on the
graph. These are for curve 2.

-10 12459.92 -9.872727 12443.04
-9.872727 12443.04 -9.745455 12424.3
-9.745455 12424.3 -9.618182 12403.5
-9.618182 12403.5 -9.49091 12380.42
-9.49091 12380.42 -9.363637 12354.82

Not all 55 lines of numbers are shown here.

-3.509097 5387.667 -3.381825 5248.426
-3.381825 5248.426 -3.254552 5118.917
-3.254552 5118.917 -3.127279 4998.845
3.127279 4998.845 -3.000007 4887.851

End of graph file. GRAFIT can read multiple sets of
curve data. For another graph, the above format of
input can be repeated in the same file (see the file
session.grf on the distribution disk). Make sure not to
put any blank lines in the graph file.
Index

ALLFIT C 2

ALLFIT users 20

bell shaped curve 15

Clear 10

Clipboard 11

Combine 10

common "shape" 1

constant constraint 16

Constraints 12

coprocessor chip 5

Copy 10



Cut 10

data files 7

Data Points 11

degree of smoothing 1, 29
degrees of freedom 23
families of curves 1

Fit Data 12

FLEXIFIT C 2

Flexifit Screen Output 11
format 7

goaway box 13

Graph 11

Graph Setup 11

graph window 18
graphics program 5

inflection points 15
initial estimates 21
logistic 3

minimum % smoothing 15
monotonicity 14
MSSD 23

Options 12
Parameter Values 12
Paste 10

Plot 12

Plot input 12

Print 10

Printing Plots 18



Quit Flexifit 10
Reduced View 11
Reset Parameters 12
RMS 23

Save As 10

Select All 10

session file 8

Setup 11

shared constraints 16
Standard Errors 24
template curve 15
variance model 15
Weighted fit 15

APPENDIX A ERROR MESSAGES

CONDITION NOT MET THE 1ST TIME!

XTX_(2) IS SINGULAR!

IN CALCPW: QL IS SINGULAR

DAL IS SINGULAR

MATRIX L*L IS SINGULAR !!



QL IS SINGULAR

MATRIX (X'X) IS SINGULAR

TOO FEW VARYING PARAMETERS

XTX IS SINGULAR

MATRIX Q IS SINGULAR

[TRACE3] ERROR COMPUTING INVERSE OF L'

MATRIX Q*Q" IS SINGULAR !

NOT ENOUGH MEMORY TO RUN FLEXIFIT
The FLEXIFIT program must have at least 15k bytes of memory
available for use, after FLEXIFIT is launched. (Macintosh

only)

NOT ENOUGH MEMORY TO FIT DATA
The FLEXIFIT program must have at least 15k bytes of memory
available in order to do a fit. (Macintosh only)

NOT ENOUGH MEMORY TO PRINT
The FLEXIFIT program must have at least 50k bytes of free
memory available for use in order to print text or graphics.
(Macintosh only

ERROR READING DATA FILE
A problem occurred while reading the input data file. Most
likely, an X or Y data point contains an alpha character.



MAXIMUM NUMBER OF DATA POINTS HAS BEEN EXCEEDED
The number of points allowed in an input data file is
limited. Shorten the data file or reduce the number of
curves.

MAXIMUM NUMBER OF CURVES HAS BEEN EXCEEDED
The number of curves in the input data file must be reduced.

APPENDIX B REPRINTS

A model-free approach to estimation of relative potency in dose-
response curve analysis.

Vincenzo Guardabasso, David Rodbard, and Peter Munson , Am. J.
Physiol. 252, E357-E364, 1987.

A versatile method for simultaneous analysis of families of
curves.

V. Guardabasso, P.J. Munson, and D. Rodbard FASEB J. 2: 209-215;
1988.



A model-free approach to estimation of relative potency
in dose-response curve analysis

VINCENZO GUARDABASSO, DAVID RODBARD, AND PETER J. MUNSON
Labaratory of Theoretical and Physical Biology, National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, Maryland 20892

(GUARDABASS0, VINCENZO, DAVID RODBARD, AND PETER J.
MUNSON. A model-free approach to estimation of relaiive po-
tency in dose-response curve analysis. Am. J. Phyeiol. 252 (En-
docrinol. Metab, 15): E357-E364, 1987.—We have developed a
new, general approach to analysis of dose-response curves from
bicassay, immunoassay {including radicimmunoagsay, immu-
noradicuretic assay, enzyme-linked immunosorbent assay), and
other experimental procedures. It provides a test for parallel-
ism, similarity of shape, and a measure of relative potency for
any set of two or more curves, The method uses a constrained
smoothing spline function to estimate the curve shape, together
with a nonlinear least-squares fitting technique to estimate
parameters for relative potency and slope. The use of “con-
strained splines” permits the analysis of nonlinear dose-re-
sponse curves that cannot be described by a simple model or
equation such as the symmetric four-parameter logistic. A
microcomputer program is used for the analysis, providing
relative potencies and their SE and evaluation of goodness of
fit.

data analysis; constrained curve fitting; families of curves;
constrained splines; hioassay; immunoassay; computer analysis

COMPARISON of two or more dose-response curves is
frequently required in studies of physiology, pharmacol-
ogy, immunology, toxicology, and many other areas of
biology and medicine. The ability to test whether two
curves are parallel, and more generally, whether they
have the same shape is essential. When the logarithm of
dose is used as the abscissa, the horizontal distance
between two parallel dose-response curves is the loga-
rithm of the relative potency' of the two assayed com-
pounds. The widespread use of parallel-line potency es-
timation (Fig. 1A} has led to very extensive development
of bioassay statistics, most notably by Finney (10) and
Blisa (2}. These “log-linear” methods of analysis provided
tests for parallelism, estimates of doses at a specified
response (e.g., EDso), and potency ratios (relative poten-
‘cies) with their confidence limits. In the past results were
computed manually or with calculators. The availability

! The relative potency of a test substance relative to a standard
preparation is the ratio of equipotent doses of the two substances. The
log of the relative potency corresponds to horizontal distances between
the two curves when log{dose) are plotted. When two log(dose)-response
curves are patallel, the relative potency is usually expressed as the ratio
of the two EDy, values {the EDy; being the “effective dose” at 50% of
maximzal response). In case of nonparallelism the relative potency
depends on the response love]l used; the applicabtlity of the relative
potency concept in this case has heen debated extensively (3, 11).

of mainframe computers greatly facilitated the analysis
and made possible the use of a larger degree of flexibility
in experimental design (e.g., permitting use of unequal
number of replicates or unequal spacing of dose levels)
(8).

Early methods required linearity of the response curve.
As such, one had to truncate the observed data to a
central linear segment, or to transform data to achieve
linearity. The log-linear model almost always represents
an approximation: as dose is extrapolated (to 0 or infin-
ity), the predicied response becomes plus or minus infin-
ity, which is a physical impossibility. Rather, biological
responses almost always tend to a minimal value (often
0} and to a maximal plateau value in the extremes. Hence
the log(dose)-response curve must become curvilinear for
small and for very large doses (Fig. 1B),

Use of a straight line Lo approximate a curvilinear
relationship can introduce bias, especially if the mean
responges of standard and unknown are different for the
two curves (Fig. 1C). Such approximation can lead to a
gpurious indication of nonparallelism and to bias in the
estimates of the relative potency and its SE (17).

A more general and useful model is the “four-param-
eter logistic” (Fig. 1) (12, 26). This model provides
upper and lower extremes for response and a central
linear region. Most of the “ parallel line” bicassay meth-
ods can be regarded as a simplification of or approxi-
mation to the logistic. A method for simultaneous anal-
ysis and comparison of several logistic curves, subject to
“equality constrains” on the parameters, has been de-
scribed previously (4). These constraints permit “shar-
ing” of parameters, and enable one to set selected param-
eters equal to a desired constant. This approach facili-
tates objective testing of parallelism for dose-response
curves, The constrained four-parameter logistic has en-
joyed considerable popularity for bie- and immunoassay,
receptor assays and related applications. However, it is
not universally applicable: it cannot deal effectively with
asymmetric curves (Fig, 24), biphasic (nonmaonotonic)
curves (Fig. 2B), “multistep” titration curves (Fig. 2C)
or even logistic curves when data are available from only
a narrow region (Fig, 21)),

The problem of asymmetry in the curve has been
handled by introduction of “asymmetry parameters” {22,
23, 28) in the logistic model. Fitting of these more com-
plex models often requires more data than is available in
a single assay or experiment. Accordingly, it may be

E357°



E358

Response

/,

Log {Dose)

FIG. 1. A: schematic represeniation of a classical approach to par-
allel line bioassay. B: dose-response curves are almost always curvilin-
ear, with a minimum and a maximum response, : when 2 curves cover
different ranges of levels of responses, then use of linear approximation
can yield biased estimates of slope and relative potency. I a symmetric
4-parameter logistic model is adequate for most, but not all, dose-
Tesponsc curve analyses.

Résponse

1 I L " 1 1 i 1 1 1
Log (Dose) .
FIG. 2. A: three asymmetric sigmoidal curves: curve 2 (thin Iine} is
identical to curve 1 {heavy line) but shifted to right by 1.5 units on a
common logarithmic svale (relative potency is 0.03):; curve 3 {dashed
ling) it not parallel to others, it covers a range twice that of curve 1, B:
nonmongtonic curves. C: multistep titration curves, I limited range
of response makes it difficult or impossible to use 4-parameter logistic,

because upper plateau is unknown or il determined. Locations of
inflection points are indicated by x.

necessary to constrain the asymmetry parameters to
predefined values estimated by pooling results from sev-
eral experiments.

When the molecular events underlying the response
being studied are known (such as in binding studies and
immunoassays), models based on the Mass-Action Law

MODEL-FREE DOSE-RESPONSE CURVE ANALYSIS

can be used (9, 25, 29, 33). Because these models can
reach a substantial level of complexity, their practical
applicability is often restricted to a limited range of
assays and conditions and to simulation studies.

A number of empirical methods for analysis of dose-
response curves have been described in the context of
immunoassays (25). In this group, spline functions rep-
resent a popular method for fitting immunoassay dose-
Tesponse curves (16, 18, 19). These piecewise polynomial
functions provide a computer-hased analysis, involve few
assumptions, and can describe nonlinear curves with
relatively low computational complexity. However, sev-
eral problems are associated with use of one of various
types of spline function (28). These problems include the
arbitrary location of knots (peints of connection of ad-
jacent polynomial segments), arbitrary selection of
smoothing parameters, sensitivity to outliers, tendency
to oscillations and undesired nonmonctonicity, difficul-
ties in fitting sigmoidal curves with plateaus, and lack of
proper weighting based on predicted response. Further,
many implementations of these empirical methods have
failed to provide statistical analyses to evaluate parallel-
ism, gondness of fit, and to estimate SE or confidence
limits.

Based on our experience with these methods, and with
computer programs for bioassay (8), radioimmunoassay
(25), and families of dose-response curves in general (4),
it became clear that there was a need for a universal
model-free method for analysis and parallelism testing
of dose-response curves of arbitrarily complex shape. One
should not need to transform or truncate the data to
achieve linearity, be forced to restrict the analysis to a
monotonic region, have to oversimplify the model leading
to systematic lack ol fit, nor be forced to use models of
excessive mathematical complexity. However, one would
like to retain the features of the constrained four-param-
eter logistic: tests of parallelism and similarity of shape
and detailed statistical analyses (4).

When presented with the curves in Fig. 24, one has
no difficulty in intuitively determining that the three
curves have similar shape; one curve is shifted to the
right, while another is siretched out, having a flatter
slope, compared with the others. What is needed here is
the ability to extract the common curve shape or tem-
plate, test for similarity of shape and parallelism, and
estimate the horizontal shift between two curves with its
degree of uncertainty.

We chose to implement these features by using a spline
function as the common curve shape. The flexibility of
the spline is controlled by imposing certain conatraints,
€.g., monotonicity, We provide an algorithm for simul-
taneous least-squares fitting of this template to all
curves, with objective tests for similarity and parallelism.
Similarity of shape for two or more curves is defined by
the ability to superimpose the data by horizontal stretch-
ing or shifting. Parallelism between curves is evaluated
by checking whether the data can be superimposed allow-
ing only horizontal shift. When curves are parallel, rel-
ative potency is determined from the magnitude of the
shift on the horizontal axis, which represents logarithm
of dose. g



MODEL-FREE DOSE-RESPONSE CURVE ANALYSIS

METHODS

Definition of common curve shape. A smooth, contin-
uous curve defined by a cubic spline function is used to
describe the dose-response relationship. A cubic spline
function is a sequence of cubic polynomial segments
joined at selected locations (knots), where continuity
conditions are satisfied for the first and second deriva-
- tives (34). We have selected a smoothing spline algorithm
(24). Here a smoothness parameter, S, controls the de-
gree of complexity of the shape of the curve. The knots
are located at each data point, so that no arbitrary
decisions are necessary.

An appropriate choice of S is needed to obtain a
satisfactory fit of the data. Various authors have sug-
gested empirical rules for the choice of § (30). We took
an alternate approach: the overall smoothness is auto-
matically adjusted by searching for the spline with the
smallest 8 factor that satisfies some constraints, e.g.,
monotonicity or a specified number of inflection points.
The monotonicity constraint overcomes the tendency of
spline functions to overshoot horizontal plateaus of many
dose-response curves. Most calibration or assay methods
require a monotonic (increasing or decreasing) standard
curve. A second constraint is obtained by restricting the
number of inflection points (i.e., changes in direction of
curvature} within the curve. Straight lines, parabolas,
and hyperbolas have no inflections; sigmoidal curves
have cne inflection (Fig. 24), while biphasic curves (Fig.
2B) generally have two. More inflection points may be
needed to represent more complex shapes (Fig. 2C). By
controlling the number of inflection points, we can adjust
the flexibility of the shape function and the complexity
of the curve.

The spline can also be subjected to weighting, to com-
pensate for nonuniformity of variance,” or to force the
curve closer to the data points in areas of special interest,
e.g., in regions of high curvature. When a curve has
changing curvature across the range of doses, the degree
of smoothing should vary for different regions. We have
accomplished this by weighting the data points in pro-
portion to the square of the second derivative when
computing the spline function.

Definition of relative potency. Each member of a family
of dose-response curves can he represented by a single
common shape (spline function}, which has been shifted
horizontally to match the data for each compound. The
horizontal shift parameter, designated ¢, is calculated for
each curve relative to the reference curve. This parameter
represents the base 10 logarithm of the relative potency.

Evaluation of paralielism. We can also include provi-
sion for stretching each curve in the horizontal direction.
This stretch parameter b will adjust the slope of each
curve with respect to the reference curve. The b param-
eters can be used for testing parallelism: constraining all
curves to be parallel (all the & = 1) should not result in
a significant loss of goodness of fit.

! Weights are inversely proportional to the expected variance of the
predicted response. A linear, parabalic, or power function relationship
between variance of response and response level is obtained by prelim-
inary analysis of the response-error relationship (27}). Weights are
adjusted after each iteration (iterative reweighting).
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TABLE 1. Algorithm to fit a family of dose-response
curves using parallel constrained splines (FLEXIFIT)

1. Cet initial estimates for scale and shift parameters b and ¢, We
may take b, = 1 in most situations,
2. Shift and scale the data (x is log,, of dose, ¥ is response)
for curve I: x" « x;
for curve 2: x° « belx — ol
for curve 3: x' « bal{x — &)
continue likewise for remaining curves
3. Fit smoothing spline fs {i.e., the common shape function} to the
shifted data (x’) for all curves combined, with the algorithm given
by Reinsch (24). Adjust the smoothness parameter S until desired
monotonicity and desired number of inflection points are obtained.
4, Now consider the full model: ¥ = fs|bi(x — ¢)]. Fit the nonlinear
parameters by, ¢ for every curve { except the first using the Mar-
quardt-Levenberg nonlinear least-squares minimization algorithm
(4, 21).
5. Repeat steps 2—4 until the weighted sum of squared residuals changes
less than 0.01%.

Estimaiion of curve shape, relative potency, and paral-
lelism. The desired constraints on the shape {monoton-
icity and inflection points) are first selected. An iterative
procedure (Table 1) utilizes successive approximations
to refine the common spline shape and parameter esti-
mates. Initial values are needed for the parameters ¢
(horizontal shift, i.e., logarithm of relative potency) and
b (slope factor) for each curve. Starting estimates can
easily be calculated by comparing the means, medians or
ranges of dose levels, or by use of log-linear or logistic
models as first approximations. Parameters can be fixed
at constant values, shared between curves or fit individ-
ually. For example, we obtain parallel curves by con-
straining several b parameters to be equal to one. Forcing
both the b and e parameters to be shared provides a test
of identity for a set of curves.

The method (Table 1) proceeds by alternaiely fitting
the common spline function to the superimposed data
and then determining, by nonlinear least-squares regres-
gion (4, 21), the scaling parameters b and ¢ based on that
spline function. This iterative procedure is continued
until convergence is reached, i.e., when the weighted sumn
of squares (W38) does nol change appreciably, using a
specified tolerance.

Final results include relative potencies for each curve,
with estimates of their SE, and evaluation of goodness
of fit (see below).

Testing for parallelism with the standard or reference
curve is done by fitting the data twice, once with and
once without the constraint that all b parameters are
equal to unity, and comparing the two fits.

Test of similarity of shape and parallelism. Poor fit in
the simultaneous analysis of a family of curves might
indicate that one ciirve has a shape different from the
others, that groups of curves of different shape are being
analyzed, or that the constraints imposed on the shape
of all curves are too strict or inappropriate.

Several statistical eriteria can be used to evaluate
goodness of fit. Each curve can be fitted individually with
a spline: for each curve, values for WSS and total -
curvature® are computed and compared with those ob-

#The total curvature of a spline function is the integrated squared
second derivative over the entire range of the curve. It is a measure of
the amount of smoothing of the spline (24); for smaller curvature values
the spline function is smoother. "
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tained for the same curve when fitted simultaneously
with other curves using a common shape. The WSS
should also be compared with independent estimates of
the within-dose error variance whenever replicate mea-
surements are available for the same dose level.

The total WSS for all curves can be compared between
fits performed with different constraints on the shape
and on the scaling parameters. The “extra sum of
squares” principle (4, 5, 21} can be used as the basis for
an F test for the comparison of different fits, utilizing an
approximate estimate of the effective number of degrees
of freedom.

Tests for randomness of residuals (deviations of ob-
served from predicted responses), such ag the Mean
Square Successive Differences test (MSSD) and the
Runs test (1), are also used. If the curves have the same
shape and the constraints used (monotonicity, inflec-
tions, parallelism, and others) were appropriate, the ob-
servations should be randomly distributed above or helow
the fitted curve. Any significant nonrandomness detected
by these tests would indicate lack of fit. In addition, tests
for gaussianness of residuals and tests for outliers can be
applied.

EXAMPLES

An asymmetric sigmoid curve. A radioimmunoassay
(RIA) standard curve was generated (Fig. 34} using an
asymmetric logistic equation (28), with parameters cho-
sen to simulate results from a typical radioimmunoassay.
A normally distributed random error was added to the
predicted y values.

Figure 34 shows a four-parameter logistic model fit to
the data. Upon casual inspection, the fit appears ade-
quate, but careful analysis of the residuals (top) indicates
a nonrandom pattern and hence significant lack of fit.
The small but consistent departures shown by the logistic
fit can lead to significant errors in dose interpolation and
potency estimation for unknown samples. Figure 3B
shows a smoothing spline fit to the data, constrained to
be monotonic and to have only one inflection point. The
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FIG. 3. Radicitnmunoassay standard curve simulated by using an
asymmetric logistic equation (28), with uniform simulated measure-
ment error. A: fit of a 4-parameter symmetric logistic equation. Tap
shows residuals-difference of ohsetrved and predicted values. Systematic
lack of fit is shown by nonzandom pattern of residuals. B: fit of a
constrainad spline function to same data; monotonicity and 1 inflection
point weze specified, Analysis of residuals (top) shows deviations to be
small and random. .
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constrained spline function fits the data well with a
random pattern of residuals and a substantially smaller
root mean square (RMS) error.

Bioassay: parallelism and relative potencies. Figure 44
shows the application of this technique to some dose-
response curves from a bioassay of four different ami-
noglycoside antibiotics (13). The response is the inhibi-
tion of contractility in a preparation of longitudinal
muscle-myenteric plexus from guinea pig ileum. The
experimental curves were analyzed simultaneously, con-
straining the common spline function to be monotonic
and to have at most one inflection point. Constraining
the curves to be parallel (by setting the slope factors b
for all curves equal to unity) resulted in no indication of
lack of fit, so we infer that the curves are parallel.
Potencies relative to the most potent compound (strep-
tomycin) were estimated as 0.74 + 0.04 (dihydrostrep-
tomycin), 0.61 + 0.03 (kanamycin), and 0.27 £ 0.01
(gentamycin), respectively. Figure 4B shows the super-
imposition of the data from all curves after shifting the
curves horizontally to the left according to their relative
potencies.

Parallelism of the standard and unknown dilution
curves. Figure bA shows data from an ELISA (enzyme-
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FIG. 4. Inhibition of contractility of a preparation of longitudinal
muscle-myentetic plexus from guinea pig ileum, hy 4 different amino-
glvcoside antibiotics (13). A: dose-response curves for 1} streptomycin
(solid triangles); 2) dihydrostreptomycin (cireles); 3) kanamycin (open
triangles); 4) gentamycin {squares). Simultaneous fit, constrained for
parallelism and monotonicity, with one inflection point. B: same data
superimposed after horizontal shift of curves 2, 3, and 4 to left according
to best estimates of their relative potencies.
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FiG. 5. ELISA assay for bacterial vuter membranes (31). Ordinate:
optical density adiusted to 100 min, A: lefr, standard curves; right,
curves from dilutions of 3 serums of unknown potency. A spline
function template was fit to all 3 eurves simultaneously, constraining
curves to he parallel and with no inflection points. B: curves superim-
posed to show fit of common spline function, after optimal horizontal
shifting using estimates of ¢ paraméters,

TABLE 2. Analysis of standard and dilution curves
for three unknowns, for data of Fig. 5

Randomness of
Residusala
Fit Constraint Sum(gflggt);arss S;ef: d‘ff
MSSD uals
+ —
1 Common shape, '2.78 NS 16 12
nonparallel
2 Common shape, 5.84 P<005 19 9
parallel curves
3 Common shape, 317 NS 19 9

1 curve nonparallel,
others parallel

MSSD, mean square successive difference criterion (1); NS, not
significant at the P = 0.05 level,

linked immunosorbent assay) for an antibody to bacterial
outer membranes (31). A standard curve (left) was ana-
lyzed simultaneously with three curves (right) obtained
from the dilution of three test sera (unknowns), assuming
parallelism. Fig. 5B shows the data superimposed on the
common spline function. The common spline function
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Fiu. o. Displacement of [*Hloxytocin from porcine epididymis
membrane receptors (15), by oxytocin (solid triongles), arginine vaso-
pressin (squares), [Thr',Gly"Jozytocin (cireles), and d{(CH,)};/Tyr-
{Me)arginine vagopressin {oper triangles). A: fit of a common spline
template, allowing for horizontal shift and constraining curves to he
parallel. B; data superimposed after horizontal shift corresponding to
relative potency.

TABLE 3. Analysis of radioreceptor assay data of Fig. 6

Sum of Squares
Fit Constraint Present Four-parameter
method logistic method*
1 Common shape 103 126
2 Common shape, 198 179

paralle] curves
Potency Retaiive to Curve 1 (in fil 2)

Curve Present Four-parameter
tethod logistic method*
2 .452+0,059 0.461£0.069
3 0.267+0.026 0.274+0.034
4 0.028+0.004 0.028x0.004

* By use of program ALLFIT {4},

was chosen to be monotonic, without an inflection point,.
Although a single shape function can be used without
appreciable lack of fit, imposition of the constraint of
parallelism resulted in lack of fit, based on the MSSD
criterion (Table 2, fit 2). By allowing just one curve to
have a different slope factor, goodness of fit became
satisfactory (Table 2, fit 3).

These data could not be readily analyzed using a four-
parameter logistic model because the range of concentra-
tions was insufficient to permit.cbservation of the full
sigmoidal shape of the curve. One could set an arbitrary
upper plateau, high above the curve, and constrain it to
be constant. However, this may or may not provide a



E362

400 1 | 1 | - 1

Bound cpm

Log (Dose)

FIG. 7. Cooperative immunoassay dose-response curves (7} for hu-
man chorionic gonadotropin (hCG, open cireles}, and for hCG §-subunit
(sefid circles). Ordinate: counts of bound *[-hCG. A: point-to-point
interpolation of data, B: common spline function fit to the 2 curves
with hest estimate of relative potency. :

satisfactory fit for the observed data and introduces
greater complexity, with very ill-defined and highly in-
teracting parameters for the ED5, and the slope. Many

_laboratories might resort to use of point-to-point inter-
polation. Alternatively one could try simple curvilinear
{quadratic, exponential, or power function) models on an
ad hoc basis. A logit transformation, calculated using an
arbitrary guess for the maximal response, might lead to
biased estimation. Because the true maximal response is
not defined by the data, an EDj for the standard curve
cannot be estimated.

Radioreceptor assay. Several dose-response curves were
generated by measuring the inhibition of binding of
[*H]oxytocin ([*H]OT) to porcine epididymis (15). Oxy-
tocin itself and various analogues were used as competing
unlabeled ligands. The response shown is the binding of
[*H)OT, expressed as %B/B,, ie., normalized to 100%
in absence of unlabeled ligand. Simultanecus analysis of
the curves (Fig. 64) allows the fitting of a common
sigmoidal shape (Fig. 6B), subject to constraints of mon-
otonicity and a single inflection point. Because the curves
appear symmetric, sigmoidal, and extend over a wide
enough range, it was possible to compare the results from
the present constrained spline approach with those from
a four-parameter logistic fit (4) obtained by constraining
all curves to share parameters a {minimal response), d
(maximal response), and b (slope factor) (Table 3). Sim-
ilar results were obtained using both methods for good-
ness of fit, relative potencies, and their standard errors.

MODEL-FREE DOSE-RESPONSE CURVE ANALYSIS

Nonmonotonic curves. Calibration or standard dose-
response curves obtained from cooperative immunoas-
says {CIA) {6} are often nonmonotonic. Response (counts
of bound labeled antigen) increases and then decreases
with increasing concentration of antigen, apparently due
to formation of circular complexes. Mathematical models
for these assays have been described (20)). However, these
models require many assumptions, involve many param-
eters, and their estimation is complex (7). Often all that
is required by the investigator is an estimate of relative
potency between two curves, after a test for parallelism.

Figure 7A shows two CIA curves: on the left is a
dilution curve for human chorionic gonadotropin (hCG}),
on the right a dilution curve for the -subunit of hCG,
Two inflection points were needed to represent the bell-
shaped curves. Figure 7B shows the same spline function
drawn on the two sets of data in the original coordinates.
The spline fit was satisfactory; the relative potency of
the hCG §-subunit with respect to hCG is estimated as
0.058 + 0.002. This was in excellent agreement with the
results obtained using the four-parameter logistic model,
to describe upstrokes or downstrokes separately (data
not shown).

DISCUSSION

We have developed a simple, generally applicable, em-
pirical method to obtain objective descriptions of families
of dose-response curves, This versatile model-free ap-
proach can be applied even when the mathematical model
(equation) is unknown, when data are insufficient to fit
the “true” underlying mathematical model or when a
simplified model shows consistent lack of fit. Spline
functions provide the desirable features of continuity
and smoothness, and in our method they can be con-
strained by a priori knowledge of the expected degree of
complexity of shape for a particular application.

The constrained spline function is computed from a
large set of data points, obtained by pooling data from a
family of curves. The usefulness of simultaneous fitting
of multiple curves has long been advocated. Indeed, the
use of “analysis of covariance” to pool information from
several curves regarding a common slope and test the
hypothesis of parallelism, is a basic tenet of bicassay
statistics applied to the log-linear model (2, 10). Lawton
et al. (14) describe a closely related method for analysis
of population of curves by scaling all curves in reference
to a common shape function. For this shape function
they used a polygonal curve, constituted of a series of
linear segments connected at selected locations. How-
ever, they did not address the problems of testing good-
ness of fit, similarity of shape and parallelism, or esti-
mating relative potency and its SE or 95% confidence
Tlimits. Waud (32) suggests simultaneous fitting of several
sets of pharmacological data. De Lean et al. (4) describe .
the advantages of simultaneous fitting of families of dose-
response curves using a general four-parameter logistic
model. Munson and Rodbard (21) use simultaneous fit-
ting of muitiple binding curves to estimate parameters
and select models for characterization of complex bind-
ing systems. The present method for simultaneous fit-
ting, employing a single common smooth function of
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arbitrary shape, provides a general method for analysis
of families of dose-response curves.

The imposition of constraints on the common shape
solves many of the problems previously asseciated with
the use of spline functions for immunoassay data analysis
{28), including undesired nonmonotonicity, oscillations,
and difficulty in fitting curves with plateaus or asymp-
totes. Iterative weighting is used to compensate for any
systematic nonuniformity of variance of response. We
avoid the need for arbitrary or subjective decisions to
specify location of knots or the degree of smoothing,
Choice of proper constraints (monotonicity, inflection
points, weighting proportional to curvature) is based on
the shape of the data curves. Constrained fitting of a
common spline template can be applied to data sets for
which no explicit mathematical model is available or
practical. The present method can also be applied in
cases where a more traditional “modeling” approach is
feasible and yields comparable results. Although the
method requires fairly extensive computations, it is prac-
tical even when performed using a microcomputer.

A number of ancillary features can be added: For
curves with maxima and minima, the EDy, can be com-
puted. Parameters for vertical as well as horizontal scal-
ing can be introduced (V. Guardabasso et al., unpublished
observations). Vertical scaling can account for both shift-
ing and stretching in the y-axis, providing further gen-
erality and flexibility of the present approach.

The method described here for fitting of families of
curves with a common shape provides a general approach
for computer fitting of dose-response data. In principle,
the method should be almost universally applicable, pro-
vided only that the response represents a smoath contin-
uous function of dose. The present method has the
virtues of simplicity and flexibility as in other empirical
approaches, yet it can provide objectivity, statistical eval-
uation, and hypothesis testing comparable with those
obtained by mathematical modeling.

The authors thank Drs. Paul Ehrlich, Carl Frasch, Daniel Goldstein,
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A versatile method for simultaneous analysis of

families of curves
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ABSTRACT

We have developed a versatile new approach to the-
simultaneous analysis of families of curves, which com-
bines the simplicity of empirical methods with several
of the advantages of mathematical modeling, including
objective comparison of curves and statistical hypothe-
sis testing. The method uses weighted smoothing cubic
splines; the degree of smoothing is adjusted automati-
cally to satisfy constraints on curve chape (monotonic-
ity, number of inflection points). By simultaneous
analysis of a family of curves, one can extract the shape
common to all the curves. Up to four linear scaling
parameters are used to match the shape to each curve,
and to provide optimal superimposition of the several
curves. By applying constraints to these scaling factors,
one can test a variety of hypotheses concerning com-
parisons of curves (e.g., identity, parallelism, or
similarity of shape of two or more curves), and thus
‘evaluate the effects of experimental manipulation, By
optimal pooling of data one can avoid the need for
arbitrary selection of a typical experiment, and can
detect subtle but reproducible effects that might
otherwise be overlooked. This approach can facilitate
the development of an appropriate model. The method
has been implemented in a Turbo-Pascal program
for IBM-PC compatible microcomputers, and in
FORTRAN-77 for the DEC-10 mainframe, and has
been utilized successfully in a wide variety of applica-
tions, — GUARDABASSO, V.; Munson, P. J.; Robearp, 1))
A versatile method for simultaneous analysis of families
of curves. FASEB J. 2: 209-215; 1988.

Key Words:  graphic and statistical analysis ~ microcomputer
Programs * mathematical modeling * nonlinear leasi-syuares
curue fithing « hypothesis testing

ANALYSIS OF SCIENTIFIC DATA MAY be regarded as be-
longing to one of two schools: empirical or model-bascd.
Each has its advantages and limitations (Table 1). We
would like to be able to extend the ohjectivity of the
model-based methods to cases where no mathematical
formulation is known and when the available data do not
permit derivation of such a model. Further, we would like

(892-6638/88/0002-0209/501.50. © FASEB

to combine the information derived from multiple
curves, e.g,, families of curves representing multiple
subjects, treatments, conditions, experiments, or
assays.

A recent review of curve-fitting procedures (1) has
noted that empirical mcthods such as polynomial re-
gression and interpolating cubic splines are “not fre-
quently used for data analysis in biology” and are “not
often useful” In this paper, we develop an enhancement
of spline-based methods that can indeed be an impor-
tant, general analysis technique for many applications
in experimental biology and medicine, especially those
dealing with several curves and experiments. Although
analysis of a single curve may fail to define adequately
the curve shape, simultancous analysis of multiple
curves may provide excellent definition of the common
shape or template. Differences between curves may
then be characterized by horizontal and/or vertical
shifting and scaling. In common practice, normaliza-
tion or scaling of data is based on one or two observed
points, e.g., baseline (0%) and/or maximal (100%)
respanses. However, it is preferable to estimate the scal-
ing factors based on consideration of all of the data,
which becomes possible once the underlying shape
function or template is determined.

Lawton et al. (2) have previously proposed a2 method
for self-modeling nonlinear regression, which achieves
many of these objectives. They used a polygonal shape
(ie., a first-order splinc, a continuous series of linear
segments joined at “knots”) to describe curves of arbi-
trary shape, combined with least-squares curve fitting
to estimate scaling parameters. However, this approach
has been used in only a limited number of studies (e.g.,
3-7). With these few exceptions, the statistical, biomed-
ical, and general scientific community has not appre-
ciated the potential widespread applicability and im-
portance of this combination of empirical and modeling
approaches,

We report here the development of a series of modi-
fications and rcfinements to the approach of Lawton et
al. (2), which we believe will make the approach con-
siderably more useful: :

'"Present address: Istituto di Richerche Farmacologiche *Mario
Negri,” Milan, Italy.
*To whom reprint requests should be addressed.
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1) Use of smoothing cubic splines (8) (instead of linear
segments) _ :

2) Elimination of the need for the user to specify the
location of the knots {junctions between segments)
in the curves

3} Automatic estimation of an appropriate smoothing
factor, based on the need to satisfy constraints re-
garding monotonicity or complexity of curve shape
(number of inflection points)

4) Weighting to compensate for nonuniformity of vari-
ance (9} :

5) Ability to fit multiple curves simultaneously, per-
mitting the use of shared parameters for multiple
curves (10, 11)

) Implementation In a practical program for use both
on mainframes and with the IBM-PC class of
micrecomputers

We have previously reported the application of this
methodology to analysis of data arising in bioassays,
immunoassays, and receptor assays (12, 13). In that
application, only horizontal shifting or scaling of the
independent variable is ordinarily required, We now
consider the use of this approach in the more general
context, providing the options of both horizontal and
vertical shifting and/or stretching, in any combination

(Fig. 1).

DESCRIPTION OF THE METHOD

This method consists of two steps: I) determina-
tion of the common shape, 2) estimation of optimal
vertical and/or horizontal scaling factors to super-
impose the curves. These steps are repeatcd iteratively
until convergence is achieved (Fig. 2; Appendix).

TABLE 1. Approaches to data analysis

X

Figure 1. Schematic representation of a family of curves. Curve B
is parallel to curve A, having undergone a horizontal shift. Curve
C is related to A by a horizontal shift and stretch. Curve I cor-
responds to A with a vertical stretch (change in maximal response),
whereas curve E has both a vertical shift and stretch. These curves
are nonmonotonic and have one inflection point. Numerous
hypotheses can be tested in terms of the four scaling factors (twa
horizental, two vertical),

Step 1: determination of the common shape

Curves of arbitrary shape can be approximated by
straight line segments joining the data points (Fig. 34).
However, this results in abrupt changes of slope or first
derivative, in contrast to the behavior of most physical
and biological systems. Curves can be better approxi-
mated by polynomials, e.g.,

¥y = kn + klx + k2x2 + k3x3 + e (I)

Increasing the degree or order of the polynomial pro-
vides increasing flexibility. However, polynomials have
two undesirable properties: they may oscillate between
points and can show inappropriate behavior as one ex-
trapolates beyond the range of the data.

Model-based school

Empirical school

Examples
Manual: visual curve fieting Manual: graphic fir of straight line {(e.g.,
Scatchard plot, semilog plot)
Computer: Computer:
Point-to-point interpolation Mass-action law models
Polynomials Four-parameter logistic
Splines (interpolating or smoothing) Multicomponent exponential decay
Compartmental pharmacokinetic models
Advantages

Simplicity

Versatility

Arbitrary shape

No assumption of ideal model

Physicochemical parameters
Objective goodness-of-fit tests
Standard errors for parameters
Objective hypothesis testing

Disadvantagcs

Subjective

No statistical information regarding precision
No hypothesis testing

No quantitative description of the data

Requires mathematical expressions
May fail to fit data
Subject to numerical difficulties
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Figure 2. Schematic representation of algerithim to Gt families of
curves of arbitrary shape. For simplicity, only two curves are shown.
A) Data points, B) The data are superimposed by vertical scaling
(shifting and stretching) and horizontal shifting of the second curve
relative to the first. €) A smoothing spline is fit to the combined
data, satisfying the wuser-specified constraints of monotonicity
and/or tumber of inflectivns, and with the appropriate weighting.
D} The shape of the template is now fixed. E) Thé position of the
temglate is scdled vertically and horizontally to obtain the best fit
to the original data. Then the data are rescaled to obtain a new, im-
proved superimposition (return to B}, The entire cycle is repeated
until ne further changes are observed, Le., until convergence,

Rather than progressively increasing the degree of
the polynomial, one can use cubic polynomials to
describe local segments of the curve, which can be
joined together smoothly at knots. This is accomplished
by requiring the first two derivatives of the curve to be
continuous. If a knot is placed at each data point, the
result is a cubic interpolating spline (Fig. 3B), which is
the smoothest curve that can be drawn exactly through
the points, where smoothness is defined as the reciprocal
of the .i_ntegr_al of the square of the second derivative,
$ = 1/](y")*dx (8). Using fewer knots than the number
of data points, placed at locations selected by the user,
one obtains least-squares splines (14): the curve will
now pass clese to, but not necessarily exactly through,
each point. However, the resiilts depend on the number
and location of the knots, which introduces an element
of subjectivity and arbitrariness.

VERSN'&LE"ANALYSIS_ OF FAMILIES OF CURVES

The smoothing spline approach (Fig. 3C) combines
the virtue of placing a knot at cach data point, with the
property that the curve should pass near—but not
necessarily exactly through — each point in the presence
of experimental errors (8, 13). Here, one must specify
a smoothing factor, S, to compromise between smooth-
ness arnd average nearness to each point. The smooth-
ness factor could be determined if one has knowledge
of the magnirude of random measurement error in the
data (8) or by a cross-validation approach (13). Alterna-
tively, the user may indicate the expected degree of
complexity of the curve, e.g., whether or not the curve
is monotonic (always increasing or decreasing), and the
maximum number of inflection points permitted. These
simple specifications are often adequate to define an ac-

_ceptable level of smoothing. Qur program will then

automatically adjust the smoothing factor § until these
conditions (constraints) are satisfied. :
Unweighted least-squares curve fitting can give inappro-
priate results if the magnitude of random measurement
error varies systematically along the length of the curve
(e.g., constant relative error g; « »7, or the more general
cases; e.g., 6 & p7). To compensate for systematic non-
uniformity of variance, one can usc transformations (log,
square root), or preferably utilize weighting, such that
each point receives weight proportional to the informa-

-

C .

Figure 3. Three metheds for empirical curve fitting. 4) Point-to-
paint interpolation. Alternatively, one can use a series of continuous
lincar scgrients, joined at a fewer number of locations (knots) than
number of ohservations. B) Interpolating cubic spiines are the
smoothest curves that will pass exactly through each point (8, 23).
C) Smoothing spline: this method shares properties with both the
interpotating and least-squares spline. A knot is placed at the x
value corresponding to each point. One uses a smoothing factor to
select a compromise berween closeness to each observation and
smoothness, by minimizing the weighted sum-of-squares of devia-
tions added to a measure of roughness (see ref 8).
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tion that it carries (9, 16). Optionally, iteratively re-
weighting the points in proportion to the square of the
second derivative appears to make the function follow
the data more closely in regions of high curvature.

If a least-squares method of curve fitting is deemed
inappropriate (e.g., owing to severe. nonnormality of
the error distribution, frequent cuthiers), one could in
principle use robust methods of curve fitting or smooth-
ing, e.g., L, norms (17) or LOWESS (18).

Step Z: vertical and horizontal scale factors

We wish to obtain the optimal superimpasition of the
entire farnily of curves by means of horizontal and/or
vertical shifting and/or stretching. We provide the use
of up to four scaling parametets, corresponding to
horizontal shift, horizontal stretch, vertical shift, or
vertical stretch (Fig. 1). Becausc some of these param-
eters may be unnecessary, redundant, or nonidentifiable,
they can be turned off by constraining them to be unity
or to another constant. :

If two curves are identical, then they must have iden-
tical values for all four scaling parameters. If they are
parallel, then they must have the same horizontal stretch
factor. Two curves can be regarded as congruent, ie.,
similar in shape, if it is possible to superimpose them
with any combination of the four scaling factors.

_We utilizc nonlinear least-squares curve fitting (19,
20), iteratively reweighted according to the variance
model (9), to estimate the scaling parameters. Sclected
parameters can be set equal to unity (or other constants),
whereas selected sets of parameters can be shared
(10, 11), corresponding to similar upper and lower
plateaus, similar slope (parallelism), or identity. Again,
in principle, L, norms or other robust methods could
be substituted for the leasi-squares method (17).

Goodness-of-fit is evaluated by a number of conven-
tional criteria, including (weighted) suni-of-squares of
deviations (8S), analysis of residuals for Gaussianness
and randomness (using the runs-test and mean squared
successive difference tests), and by plots of residuals
and the histogram of residuals (19, 21). The effective
number of degrees of freedom (df) for a smoothing
Spline is an interesting question. For an interpolating
spline, the number of df is zero. For a smoothing spline,

TABLE 2. Input and output of program FLEXIFIT

it depends on the degree of smoothing. When the
degree of smoothing is large, the spline approaches a .
straight line, which has two parameters. Thus, df ap-
proaches its upper limit of N - P —~ 2, where N =
is the total number of points and P is the number of
scaling parameters that have been fit. Using this ap-
proximate {maximal) number of df, one can convert the
weighted SS to a mean square (MS) and root mean
square (RMS}) error, and obtain approximate, minimal
estimates of the asymptotic standard errors of param-
eters. Monte-Carlo, jackknife, and bootstrap methods
(22) can be used to provide improved estimates of effec-
tive df, RMS, and standard errors of parameters in
particular applications. :

IMPLEMENTATION

The method has been implemented in computer pro-
grams in Turbo-Pascal and FORTRAN 77 for the
IBM-PC class of microcomputer. A floating-point co-
processor chip is highly desirable to enhance execution
speed. Table 2 summarizes the nature of the input and
output of program FLEXIFIT,

APPLICATION TO HYPOTHESIS TESTING

One can test several hypotheses (e.g.,, identity or
parallelism of two or more curves) as follows: 7) formu-
late the hypothesis in terms of a set of constraints on
shift and scale paramcters, e.g., b, = by 2y fit the
curves without these constraints (Fig. 4B); 3) fit the
curves a second time subject to these constraints (Fig.
4A4). Then, compare the sum-of-squares for the two fits,
using an F test hased on the extra sum-of-squares prin-
ciple (19). This evaluates whether the use of additional
fitted parameters 1n the unconstrained fit has resulted
in a statistically significant reduction in the sum-of-
squares, This test assumes that the df for the residual
mean square have been estimated appropriately. One
can also compare various fits (corresponding to various
models or hypotheses) in terms of the randomiriess of
the residuals (21).

Input

Output

No. of curves
Curves: xy pairs
Coeflicients of variatice model ]

{e.g., constant ¢, constant %CV, or ¢ as function of »)
Monotonicity (yes/no) '
Maximum number of inflection points
(") weighting (yes/no)

Constant parameters
Shared parameters

Common curve template
S8, MS, RMS, approximate df :
Scaling parameters and their approximate standard errors
Graphs of curves in original coordinate system
Graph of superimposed curves (after scaling)
Tests of residuals:
Randeniness (mean square successive difference,
MSSD, and runs tests) (see ref 20)
(Faussiariness : )
Outliers
Graph of standardized residuals .
F test to compare alternative fits, models, constraints
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Figure 4: Use of FLEXIFIT for hypothesis testing. 4) Two curves
fit subject to the constraint of parallelism (5, = b). A good fit is ob-
tained, but careful analysis of residuals suggests a subtle lack of fit.
B) Repeat fit, allowing for horizontal stretch as well as shift, results
in a major improvement in goodness-of-fit, viewed in terms of mag-
nitude {sum-of-squares, MS, RMS) or randamness (MS3D test) of
residuals, One can test numerous other hypotheses by formulating
them in terins of constraints invelving one or more of the scaling
parameters. ' '

DISCUSSION

Families of curves are commonly obtained from the ob-
-~servation of multiple experiments, assays, treatments,
or subjects. We provide a versatile method for simulta-
neoué analysis of families of curves when no a priori
knowledge is available regarding the shape of the
curves, This method is broadly applicable. We have
previously illustrated its use in the estimation of rela-
- tive potencies in bioassay, immunoassay, and similar
procedures (13). This is ordinarily a simplified case,
where only horizontal scaling parameters may be
necessary. ' o
 The availability of vertical scaling parameters per-
mits handling of cases where the curves have different
baselines or different maximal response (e.g., curves A,
D, and E in Fig. 1). In these cases the present method
ig superior to the use of a normalized response variable
(e.g., percentage of contral, percentage of maximal
response, percentage between minimal and maximal
response), because it uses information derived from all
of the points on the curves to estimate scaling, unlike
approaches based on just one or two measured values
for control, minimal, or maximal response. Thus it is
possibile to properly scale the experimental curves even
if a. measure of these 0 and 100% values is missing
owing to accident or experimental design. '
" This model-free analysis of data provides many of
the advantages of mathematical modeling in cases
where the experimentalist cannot supply a mathemati-
cal formulation of a model (Table 1). It facilitates pool-
ing of results from several experimental curves, even
whehn these involve different experimental designs
(different sets of values for the independent variable).
This should permit display of data from many or all of
the experiments in a sefies, rather than the common
practice wherein the experimentalist must select a typi-

cal ‘or representative experiment for illustration. This

V‘ERSAIIEE'_A_NA_LY_SIS OF FAMILIES OF CURVES

selection process rarely involves a random sample:
often the best experiment is presented, losing informa-
tion about between-experiment variability. By isolating
extraneous sources of variation, as with the use of anal-
ysis of variance or analysis of covariance, the present
method provides sighal avcraging of pooled data, and
retains objectivity, allowing one to display all of the
data simultaneously. '

Resourceful use of constraints permits. testing of
many hypotheses. By selecting various combinations of
scaling parameters, by excluding unwanted scaling pos-
sibilities from the model, by constraining some of the
parameters to be shared between subgroups of curves
or to be fixed at constant values, the uset can inter-
actively test hypotheses regarding parallelism, similar-
ity of shape, or other features in common. Subsets of
curves significantly different in shape can also be
identified {13). ' .

Analysis of data with this model-free method may
help the experimentalist to develop an appropriate
mathematical model, by indicating which aspects of the
data are invariant and reproducible between curves.
However, we still have an empirical approach, with the
major purpose of providing a description of the fitted
function. In contrast, an appropriately chosen mathe-
matical model may provide parameters with a dircet
physicochemical interpretation, provide clucs to mech-
anisms, or permit extrapolation beyond the range of
the ‘data. Thus, model-free analysis may be less in-
formative, and will not substitute for properly imple-
mented mathematical modeling. :

By extending some of the advantages of mathematical
modeling to families of curves of empiricaily defined, .
arbitrary shape, this method imposes some of the com-
plexity and terminology of modeling. It requires some
farniliarity with basic principles of statistics, and neces-
sitates the use of the computer. However, we have
provided a practical implementation of the algorithm in
a program, designated FLEXIFIT, for popular micro-
computers. The program is easily used interactively,
and provides graphic displays of data. Computing
times are acceptable, and tend to be slow only for large
data sets. The continuous development of computer
hardware will allow for even faster, easier-to-use
implementation. _ : '

Model-free analysis of data could be, as with any
analytical or statistical technique, abused or misused.
The user must select appropriate constraints, or the
parameters may be ambiguous and nonidentifiable. -
One mighit inappropriately use an exccssive numbet of
scaling parameters to obscure large degrees of random
or systcmatic variation. To avoid such problems, it is
desirable to report the individual scaling factors, or at
least their mean and standard deviations, and to show
the results both in the original coordinates and after
scaling to achieve optimal superimposition.

Further extensions and developments of this approach
involve the development of a library of shape templates
corresponding to defined mathematical models (e.g.,
parabola, hyperbola, logistic, exponential, power furic-
tion, etc.). This might permit a selcction of a mathe-
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‘matical model for further analysis. In application to
routine assays, a common reference shape can be ex-
tracted from 10 or 20 most recent assays of the same
type. This shape template can subsequently be held
constant, and every new assay curve can be tested for
compatibility with the previously established template.

In summary, we have presented a method for model-
free analysis of families of curves, based on weighted,
four-parameter constrained smoothing splines. This
approach can expand the role of computerized curve
fitting to cases where a mathematical model is not avail-
able or not practical. By so doing, it could introduce
more scientists to the prineiples of statistical analysis of
data, provide an improved level of objectivity, and
stimulate the search for appropriate mathematical
representations of the underlying processes.

Ms. Kim Chen developed the version of the program in
FORTRAN 77. We wish to thank many colleagues who provided
2 constructive critique of preliminary versions of this manpuscript,
especially J. Ashwell, I D. J. Bross, K. Dixon, D. Finney, S. Garat-
tini, R, Jernigan, D. Lichtstein, J. E. A. McInosh, J. E. Rall,
M. Raocchetti, E. Rovati, 8. Sabol, A. N. Schechter, R. H.
Schwartz, 8. Schwarz, L. Sheiner, and R. Shrager. We are grateful
10 several individuals who provided data used for testing the pro-
gram;: Drs, P. Ehrlich, W. Moyle, H, Xu, D. Lichistein, J. Veldhuis,
M. Maggi, B. Cox, C. Frash, M. Zweig, J. Foy, N. Beaudry, and
R ‘Iacey. Ms. Jeanne Barnett and Ms. Mary Keffer provided excel-
lent secretarial assistance. ' ' '
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APPENDIX

A full discussion of propertics of splines can be found
in standard references such as deBoor (23). We sum-
marize briefly the definition of a spline. Given the
sequence of knots x; < x; < -+ < x,, and a particular
value of x, where x; £ x < %y, for some 1 = 1,. . .,
n — 1, the spline function is a cubic polynomial

j}(x) = pi + gilx = %) + nlx — %) + slx = )P
The sel of coefficients (g5, ¢, 7, bt =1, ..., n — 1,
for the spline polynormials raust obey the followmg con-

d_ltlons (setting %, = x41 ~ x):

hH Conunmty of the sp]me

bi + gify +r¢h +5¢ﬁ—p¢+1 i=1,...,n -2
2y Continuity of the first derivative:
q;+2r,h+35,g—_q,+1 i=L...,n -2

3) Continuity of the second derivative:
2 + Oy = 214 i=1,...,n -2
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¢) End conditions:
= 0 and Tr-1 + 65,,_1:‘1,,_1 =0

Given a set of data (x, y)) ¢t = 1,..., n, a smoothing
spline minimizes the integral {; [fS"(x)]ia’x subject to
the condition T y; — fi(x)]*> = § for a specified smooth-
ing factor S. The particular values for the parameters
(p, g, 7, s) may be calculated with the algorithm
described by Reinsch (8). In our algorithm the factor §
is adjusted to the smallest possible value (ie., least
degree of smoothing) for which the user-specified con-
straints of monotonicity and/or number of inflection
points are satisfied.

A particular member of a family of curves of similar
shape may be represented as a linear shift and scale, in
both horizontal and vertical directions, around an
underlying shape function fs, in this case a spline
function. For curve j, the model is

d)fslbix - )] + d;

y={a-

. . Here, the values of g and d may be regarded as defined .

landmark values in the y measurement scale, e.g., base-
 line and maximal response levels. The parameter ¢ is
horizontal shift; b is a honzontal strctch or scaling
factor,
The FLEXIFIT algorithm for adjustmg up to four
parameters (a;, b;, ¢;, d;) for each curve together with
the parameters of the spline function is as follows:

I) Specify initial estimates for (a;, &, ¢;, &) for j = 2,
..., m, the number of curves in the family. The
values for (a,, b,, ¢;, d,) can be fixed at (1, 1, 0, 0}.

2) Bhift and scale the data from all the curves,
for curve Lt xj < ¥

FAREl

for curve 2: & — bo(x; — ¢9)
21 (i — da)f{ag — dy)

for cutve j: x} < b{x - ¢)

i (i - dMe - )

VERSATILE ANALYSIS OF FAMILIES OF CURVES

3) Fit the smoothing spline f to the scaled and shifted
data (x, y¥), i = 1,..., n, adjusting the smoothing
factor S to satisfy user-spccified constraints concern-
ing monotonicity and number of inflection points.

4) Now fix thé parameters (i, g, 7, 5;) of the smooth-
ing spline f5. Using a Levenberg- Marquardt algo-
rithm (20), adjust the parameters (a;, b;, ¢, d;) of
the full model

¥ = (g — d)fstesx - ¢)]
to the data for each of the y = 1,..., m curves, so
that the sum-of-squares of residuals is minimized.

5) Iterate steps 2, 3, and 4 until convergence is obtained

(the weighted sum-of-squares of residuals changes
less than 0.01%).

6) Calculate summary statistics regarding the fit, in-
cluding the parameters (4, 4 ¢ d), their standard
errors, confidence intervals, root-mean-square error
(RMS), number of sign runs of residuals, mean
square successive difference (MSSD) test applied to -
the residuals, appropriate ratios or differences of
parameters [e.g., log relative potency = (6 — ¢;)
when x is log dose].

Constraints involving the various parameters should
be employed to avoid over-parameterization. Selected .

groups of parameters may be required to share a value -~

(e.g., a; = ap) or to remain at predetermined constant
values (e.g., b, = 1). Judicious use of this feature allows
for testing relevant hypotheses about these parameters

by comparing the residual sum-of-squares (and other

criteria for goodness-of-fit) between runs with different
constraints.

Several alternative parameterizations are posalblc
The parameter ; is used here to correspond to log ¢;in’
ALLFIT (10). It may also be desirable to set
K; = a; — d; (12). Each of these parameterizations has
its own advantages and may be useful in selected appli-
cations.
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